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Abstract: In this paper, we will discuss the significance of delayed unit step function for discontinuous functions.
The discontinuous functions are represented in terms of delayed unit step function and their Laplace transform is
then found. Laplace transform is a mathematical tool which makes it easier to solve the problems in engineering and
science.
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Introduction is finite. It should however, be keep in mind that

Laplace transformation is a mathematical tool above condition are sufficient and not necessary [8, 9].
which is used in the solving of differential equations Laplace transformation of some elementary
by converting them from one form into another form function [12-14]:

[1,2,3,4,5,6,7,8,9, 10 ]. It is also used to convert

1
the signal system in frequency domain for solving it in LL{1}= E’ p>0

a simple and easy way. It has wide applications in n!
different fields of engineering and technology [11, 12, 2.L{t"} = pnt1’
13, 14, 15, 16, 17, 18, 19, 20, 21, 22 ]. This paper wheren = 0,1,2,3 o.........
discusses the significance of delayed unit step function
for discontinuous functions. The discontinuous 3.L{e%} = S—gP~¢
functions are represented in terms of delayed unit step p
functions and their Laplace are found. 4.L {sinat} = 2 2P >0
Definition P a

Let F (t) is a well defined function of t for all t > 5.L {sinhat} = m'p > |al
0. The Laplace transformation [6, 7] of F (t), denoted p
by f (p) or L {F (t)}, is defined asL {F (t)} 6.L {cosat} = ZiraP >0
:fowe‘ptF(t)dt = f(p), provided that the integral 7.L {coshat} = L’p > |al
exists, i.e. convergent. If the integral is convergent for 8_32‘“2
some value of p, then the Laplace transformation of F 8.L{ug ()} = >
(t) exists otherwise not. Where p the parameter which 9. L{u,(t) f(t — a)} = e~ f(p)
may be real or complex number and L is the Laplace
transformation  operator [8-15]. The Laplace Unit Step Function:

transformation of F (t) i.e. fowe‘pt F(t)dt exists
for p>a, i.e. F (t) is continuous andlim,,_,.{e % F(t)}

If L{f ()} = f(p)and u,(t)is unit step function [10,11] i.e.

1,t>a
ua(t)_{o,0<t<a

Then, L{u, (t) f(t — a)} = e~ f(p)
or
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L7H{e P f(p)} = ua(®) f(t — a)

Application I

Express the following function in term of unit step function and find the Laplace Transform

FO) = { 1,t>n
T lto<t<n
Sol ution
L{2tu(t)} — L{2tu(t — m)} + L{u(t — m)}
= 2L{(t — Ou(t — 0)} — 2L{(t — w + m)u(t — m)} + L{u(t — m)}

= 2e7PL{f(t)} — 2L{(t — mu(t — 1)} — 2nL{(t — )} + L{u(t — m)}
After solving, we get,

2 1 2 2n
SteT S5 —]
p p b p

Or,

2 2 1-2m
—t e ™ ——+ ]
p p p

Application II

Express the following function in term of unit step function and find the Laplace Transform
f(t):{ tL0<t<1
2-t1<t<2
Sol ution

Llt{fu(t — 0) —u(t — 1D} +
2 -[fut-1) —u(t - 2)}]

= [L{(t — 0)u(t — 0)] — L{tu(t — D)} + 2{u(t — 1)} — 2L{u(t — 2)} — L{tu(t — 1)} + L{tu(t — 2)}
After solving, we get,

1
=3 +[1—-2e7P 4 (e7P)?]
Or,
(1= ey

1—e2p
Application I1I

Express the following function in term of unit step function and find the Laplace Transform
F@©) = { 0,t>m
ksint0<t<m
Sol ution
ksint[ u(t — 0) —u(t — )]

= kL{sin(t — 0)u(t — 0)} — kL{sin(t — 7 + m)u(t — )}

= k_ kcosm L{sin(t — m)u(t — m)ksinwL{cos(t — m)u(t — m)}

p?+1
_k kcost  kpsinm —pm
Tp2+1l Ipr+1 pr41
k
=zyite™l

Application IV
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Express the following square wave function in term of unit step function and find the Laplace Transform
f(t)={ bo<t<b
—b,b<t<2b
Sol ution
b[ u(t — 0) — u(t — b)] — b[u(t — b) — u(t — 2b)

=bL{u(t)} — 2bL{u(t — b)} + bL{u(t — 2b)}

After solving, we get,

b 1 1
——2be PP — 4 —pe=2bp
p p p
Or,
b 1 1
——2be PP — 4 —pe=2bp
p
Or,
b
—[1—2e7PP 4 ¢~2bP]
p
Application V

Express the following full wave rectifier function in term of unit step function and find the Laplace

Transform
sint0< t<m

f®= {—sint—n <t<o0
Sol uti on
sint[u(t —0) —u(t —m)] — sint[u(t + m) — u(t — 0)]
= 2sintu(t) — sintu(t — ) — sintu(t + )
= 2L{sin(t — 0)u(t — 0)} — L{sin(t — m + mMu(t — m)} — L{sin(t + m — m)u(t + m)}
After solving, we get,

2 e PTcosmt e Pfsint eP"cosm 4 ePrsinm
p:+1 p?+1 p?+1 p?+1  p?+1
2
= 71 [1 — cosmcospm + sinmsinpm]
2
= A1 [1—cosm(1+ p)]
Application VI
Express the following function in term of unit step _ 15 3e73p
function and find the Laplace Transform Lir@®)} = ? - p
£©) _{15,t< 3
12,23 Conclusion:
. This Paper discussed the significance of delayed
Solution: 15+0¢<3 unit step function for discontinuous functions. We
) = {15 3’ >3 have found the Laplace transform of the discontinuous
Or —3t= functions represented in terms of delayed unit step
’ 0t<3 function.
fOy=15+{_
-3,t=3
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