

 49

A Simulations Based Study for Diagnosing Impacts of MANETs Routing Protocols on TCP Performance with

Background Traffic

Salman Faiz Solehria1, Salim-ur-Rehman2, Shaukat Ali3

1,2Department of Computer Science, Sarhad University of Science & Information Technology Peshawar, Pakistan

 3Department of Computer Science, FG Degree Peshawar Cantt, Pakistan
{salman, salimurrehman }@suit.edu.pk, shoonikhan@gmail.com, salman@suit.edu.pk

Abstract: TCP is the major component of computer network whether it’s wired or wireless. The standard TCP was
developed for wired network. In Mobile Ad Hoc Network (MANETs) legacy TCP performs poorly and require
drastic changes. All most, all TCP performance studies are based on such simulations in which the real world
problems are ignored such as background traffic or other interference caused by WiFi hotspot and other devices in
range. In order to delve the effect of background traffic on the relative TCP performance, a simulation has been
developed to model the back ground traffic. This paper studies the effect of routing protocols on TCP performance
with background traffic. Three different routing protocols (AODV, DSDV, and DSR) are evaluated with three
different TCP variants (SACK, NewReno, Tahoe). The performances parameters that are calculated in this paper are
throughput, congestion window and end to end delay etc. It was deduced from the simulation results that SACK
TCP produces 6.66 % throughput with DSR while no other combination produces more than 0.66 % throughput.
[Salman Faiz Solehria, Salim-ur-Rehman, Shaukat Ali. A Simulations Based Study for Diagnosing Impacts of
MANETs Routing Protocols on TCP Performance with Background Traffic. World Rural Observ
2021;13(4):49-59]. ISSN: 1944-6543 (Print); ISSN: 1944-6551 (Online). http://www.sciencepub.net/rural. 5.
doi:10.7537/marswro130421.05.

Keywords: TCP; MANETs; AODC; DSDV; DSR; SACK; NewReno; Tahoe

1. Introduction

Due to the rapid growth in technology Mobile
Ad hoc network is becoming part of life day by day.
Mobile Ad-hoc Networks (MANETS) exchange
information in a wireless environment between a
numbers of autonomous nodes and forming a multi hop
radio network without any pre-existing infrastructure
and base station i.e. the nodes communicates directly
with one another in a peer-to-peer fashion. The
incredible growth of private computers and the clever
usage of mobile computers necessitate the need to
sharing of information among computers. Currently this
sharing of information is complex, as the users need to
perform administrative tasks and set up static, bi-
directional links between the computers. This motivates
the construction of temporary networks with no wires
and no communication infrastructure and no
administrative intervention required. Such an
interconnection between mobile computers is called an
Ad-hoc Network. In such a setting, it may be necessary
for the mobile computers to take help of other
computers in forwarding a packet to the destination due
to the limited scope of each Mobile host’s wireless
transmission.

2. Relative Work

Although some related work has been carried

out in (Bakht, 2004) (Das et al., 2000) (Dyer and
Boppana, 2001) (Johansson et al., 1999) (Pucha et al.,
2004) (Trung et al., 2007) but they have encountered
other factors (i.e. node density, mobility, node pause
times traffic, delay, large topology area etc) that can
effect TCP performance significantly and have not
justified the actual affect of the routing protocols on
TCP performance. A closely related work is carried out
in (Fall and Floyd, 1996), but it is based on the fixed
wired networks not on Mobile Ad-Hoc Networks.
Another closest work has been done by (Pucha et al.,
2004) but they have changed node density and node
pause times and have not touched background traffic.

3. Routing Algorithm

We have considered mainly three routing
algorithms i.e. DSDV, DSR and AODV. These routing
protocols are analyzed with different variants of TCP.

3.1. Destination Sequenced Distance Vector-DSDV

DSDV (Perkins and Bhagwat, 1994) is a hop-
by-hop distance vector routing protocol that in each
node has a routing table that for all reachable
destinations stores the next-hop and number of hops for
that destination. Like distance-vector, DSDV requires
that each node periodically broadcast routing updates.
The advantage with DSDV over traditional distance

World Rural Observations 2021;13(4) http://www.sciencepub.net/ruralWRO

50

vector protocols is that DSDV guarantees loop-
freedom. To guarantee loop-freedom DSDV uses a
sequence numbers to tag each route. The sequence
number shows the freshness of a route and routes with
higher sequence numbers are favorable. A route R is
considered more favorable than R' if R has a greater
sequence number or, if the routes have the same
sequence number but R has lower hop-count. The
sequence number is increased when a node A detects
that a route to a destination D has broken. So the next
time node A advertises its routes, it will advertise the
route to D with an infinite hop-count and a sequence
number that is larger than before. DSDV basically is
distance vector with small adjustments to make it better
suited for ad-hoc networks. These adjustments consist
of triggered updates that will take care of topology
changes in the time between broadcasts. To reduce the
amount of information in these packets there are two
types of update messages defined, full and incremental
dump. The full dump carries all available routing
information and the incremental dump that only carries
the information that has changed since the last dump.

3.2. Ad-hoc On Demand Distance Vector-AODV

The Ad Hoc On-Demand Distance Vector
(AODV) (Perkins and Royer, 1999) routing protocol
enables multi-hop routing between participating mobile
nodes wishing to establish and maintain an ad-hoc
network. AODV is based upon the distance vector
algorithm. The difference is that AODV is reactive, as
opposed to proactive protocols like DV, i.e. AODV
only requests a route when needed and does not require
nodes to maintain routes to destinations that are not
actively used in communications. As long as the
endpoints of a communication connection have valid
routes to each other, AODV does not play any role.
Features of this protocol include loop freedom and that
link breakages cause immediate notifications to be sent
to the affected set of nodes, but only that set.
Additionally, AODV has support for multicast routing
and avoids the Bellman Ford "counting to infinity"
problem (Steenstrup, 1995). The use of destination
sequence numbers guarantees that a route is "fresh".
The algorithm uses different messages to discover and
maintain links. Whenever a node wants to try and find a
route to another node, it broadcasts a Route Request
(RREQ) to all its neighbors. The RREQ propagates
through the network until it reaches the destination or a
node with a fresh enough route to the destination. Then
the route is made available by unicasting a RREP back
to the source.

The algorithm uses hello messages (a special
RREP) that are broadcasted periodically to the
immediate neighbors. These hello messages are local
advertisements for the continued presence of the node
and neighbors using routes through the broadcasting

node will continue to mark the routes as valid. If hello
messages stop coming from a particular node, the
neighbor can assume that the node has moved away and
mark that link to the node as broken and notify the
affected set of nodes by sending a link failure
notification (a special RREP) to that set of nodes.
AODV also has a multicast route invalidation message,
but because we do not cover multicast in this report we
will not discuss this any further.
 For routing table management, AODV needs
to keep track of the following information for each
route table entry:

1. Destination IP Address: IP address for the destination

node.
2. Destination Sequence Number: Sequence number for

this destination.
3. Hop Count: Number of hops to the destination.
4. Next Hop: The neighbor, which has been designated

to forward packets to the destination for this route
entry.

5. Lifetime: The time for which the route is considered
valid.

6. Active neighbor list: Neighbor nodes that are actively
using this route entry.

7. Request buffer: Makes sure that a request is only
processed once.

 For route discovery, a node broadcasts a
RREQ when it needs a route to a destination and does
not have one available. This can happen if the route to
the destination is unknown, or if a previously valid
route expires. After broadcasting a RREQ, the node
waits for a RREP. If the reply is not received within a
certain time, the node may rebroadcast the RREQ or
assume that there is no route to the destination.
Forwarding of RREQs is done when the node receiving
a RREQ does not have a route to the destination. It then
rebroadcast the RREQ. The node also creates a
temporary reverse route to the Source IP Address in its
routing table with next hop equal to the IP address field
of the neighboring node that sent the broadcast RREQ.
This is done to keep track of a route back to the original
node making the request, and might be used for an
eventual RREP to find its way back to the requesting
node. The route is temporary in the sense that it is valid
for a much shorter time, than an actual route entry.
When the RREQ reaches a node that either is the
destination node or a node with a valid route to the
destination, a RREP is generated and unicasted back to
the requesting node. While this RREP is forwarded, a
route is created to the destination and when the RREP
reaches the source node, there exists a route from the
source to the destination.
 For route maintenance, when a node detects
that a route to a neighbor no longer is valid, it will

World Rural Observations 2021;13(4) http://www.sciencepub.net/ruralWRO

51

remove the routing entry and send a link failure
message, a triggered route reply message to the
neighbors that are actively using the route, informing
them that this route no longer is valid. For this purpose
AODV uses a active neighbor list to keep track of the
neighbors that are using a particular route. The nodes
that receive this message will repeat this procedure.
The message will eventually be received by the
affected sources that can chose to either stop sending
data or requesting a new route by sending out a new
RREQ.

3.3. Dynamic Source Routing - DSR

Dynamic Source Routing (DSR) (Broch et al.,
1998) (Johnson and Maltz, 1996) (Johnson and Maltz,
1996) also belongs to the class of reactive protocols and
allows nodes to dynamically discover a route across
multiple network hops to any destination. Source
routing means that each packet in its header carries the
complete ordered list of nodes through which the
packet must pass. DSR uses no periodic routing
messages (e.g. no router advertisements), thereby
reducing network bandwidth overhead, conserving
battery power and avoiding large routing updates
throughout the ad-hoc network. Instead DSR relies on
support from the MAC layer (the MAC layer should
inform the routing protocol about link failures). The
two basic modes of operation in DSR are route
discovery and route maintenance.

Route discovery: Route discovery is the
mechanism whereby a node X wishing to send a packet
to Y, obtains the source route to Y. Node X requests a
route by broadcasting a Route Request (RREQ) packet.
Every node receiving this RREQ searches through its
route cache for a route to the requested destination.
DSR stores all known routes in its route cache. If no
route is found, it forwards the RREQ further and adds
its own address to the recorded hop sequence. This
request propagates through the network until either the
destination or a node with a route to the destination is
reached. When this happen a Route Reply (RREP) is
unicasted back to the originator. This RREP packet
contains the sequence of network hops through which it
may reach the target. In Route Discovery, a node first
sends a RREQ with the maximum propagation limit
(hop limit) set to zero, prohibiting its neighbors from
rebroadcasting it. At the cost of a single broadcast
packet, this mechanism allows a node to query the
route caches of all its neighbors. Nodes can also
operate their network interface in promiscuous mode,
disabling the interface address filtering and causing the
network protocol to receive all packets that the
interface overhears. These packets are scanned for
useful source routes or route error messages and then
discarded. The route back to the originator can be
retrieved in several ways. The simplest way is to

reverse the hop record in the packet. However this
assumes symmetrical links. To deal with this, DSR
checks the route cache of the replying node. If a route
is found, it is used instead. Another way is to
piggyback the reply on a RREQ targeted at the
originator. This means that DSR can compute correct
routes in the presence of asymmetric (unidirectional)
links. Once a route is found, it is stored in the cache
with a time stamp and the route maintenance phase
begins.

Route maintenance is the mechanism by which
a packet sender S detects if the network topology has
changed so that it can no longer use its route to the
destination D. This might happen because a host listed
in a source route, move out of wireless transmission
range or is turned off making the route unusable. A
failed link is detected by either actively monitoring
acknowledgements or passively by running in
promiscuous mode, overhearing that a packet is
forwarded by a neighboring node. When route
maintenance detects a problem with a route in use, a
route error packet is sent back to the source node.
When this error packet is received, the hop in error is
removed from this hosts route cache, and all routes that
contain this hop are truncated at this point.

4. Transmission Control Protocol-TCP

Although TCP is free from the underlying
network technologies, some assumptions in its
characteristics are clearly inspired for wired networks
dominant at the time when it was conceived. TCP
implicitly assume that modes are static (i.e. they do not
change their position over time) and packet loss is due
to congestion causing buffer overflows at the
intermediate nodes (routers).This assumption does not
hold in MANETs as the network topology may change
due to node movement and failure (e.g. because the
battery is exhausted). Packet losses due to buffer
overflow are rare events in MANET. Therefore the
legacy TCP performs badly in MANETs.

4.1. Tahoe TCP

Tahoe by Jacobson (Jacobson, 1995) assumed
that congestion signals are represented by lost
segments. It was assumed by Jacobson that losses due
to packet corruption are much less probable than losses
due to buffer overflows on the network. Therefore, on a
loss, the sender should lower its share of the bandwidth.
Tahoe TCP includes Slow-Start, Congestion Avoidance
and Fast Retransmit. Tahoe TCP detect packet loss by
either expiring RTO or receiving 3 duplicate ACKs. In
case of receiving 3 duplicate ACKs Tahoe TCP
retransmits the lost packet without having to wait for
the RTO to expire. As RTO is relatively quite enough
to transmit a packet, this process is called Fast
Retransmit. Upon receiving a congestion signal Tahoe

World Rural Observations 2021;13(4) http://www.sciencepub.net/ruralWRO

52

TCP sets its threshold value to half of the value of the
congestion window just before the lost is recorded and
congestion window is set to 1 MSS and enters into slow
start. This process is called congestion avoidance.
Tahoe TCP does not deal well with multiple packet loss
within a single window of data.

4.2. Reno TCP

Reno TCP introduced a major improvement
over Tahoe TCP by detecting packet loss via time out
and not via duplicate ACKs. Upon receiving duplicate
ACKs, Reno TCP does not enter into Slow-Start but
into Fast Recovery, which should be activated after
Fast Retransmit.

In Fast Recovery, threshold value is set to half
of the congestion window. The congestion window is
set to threshold plus 3 * MSS (Where 3 is the number
of duplicate ACKs required to trigger Fast Retransmit).
Upon the receipt of each duplicate ACK, the congestion
window is inflated by one segment as each duplicate
ACK signals the fact that another packet has left the
network. After receiving W/2 duplicate ACKs (where
W is the size of congestion window before receiving
the duplicate ACKs), the window will be ready to
include new packets. When all of the duplicate ACKs
are received, the congestion window is set to threshold
value (W/2). After this congestion window is increased
one packet at a time. In case of RTO Reno TCP
exhibits the same behavior as Tahoe TCP. Although
Reno TCP is better than Tahoe TCP in dealing with
single packet loss, Reno TCP is not better when
multiple packets are lost within a single window of data
(Jacobson, 1995). In the Internet, packets are often
transmitted in bursts (Comer and Stevens, 1994). As a
result, losses often happen in bursts. This is primarily
due to FIFO (Drop Tail) queues in routers. Therefore
Reno TCP faces problems because of its Fast Recovery
and Fast Retransmit (which can lead to impacting
throughput of the connection). Two solutions are
provided to overcome Reno TCP multiple packets loss
problem: NewReno TCP and SACK TCP.

4.3. NewReno TCP

NewReno modifies the Fast Retransmit and
Fast Recovery. These modifications are intended to fix
the Reno problems above and are wholly implemented
in the sender side. A modification of Reno lead to
NewReno TCP which shows that Reno can be
improved without the addition of SACKs but still
suffers without it. Here, the wait for a retransmit timer
is eliminated when multiple packets are lost from a
window. NewReno is the same as Reno but with more
intelligence during Fast Recovery (Clark and Hoe,
1995) (Hoe, 1995). It utilizes the idea of partial ACKs:
when there are multiple packet drops, the ACKs for the
retransmitted packet will acknowledge some, but not all

the segments send before the Fast Retransmit. In TCP
Reno, the first partial ACK will bring the sender out of
the Fast Recovery phase. This will result in the
requirement of timeouts when there are multiple losses
in a window, and thus stalling the TCP connection.

In NewReno, a partial ACK is taken as an
indication of another lost packet and as such the sender
retransmits the first unacknowledged packet. Unlike
Reno, partial ACKs don't take NewReno out of Fast
Recovery. This way, it retransmits one packet per RTT
until all the lost packets are retransmitted and avoids
requiring multiple Fast Retransmits from a single
window of data. The downside of this is that it may
take many RTT's to recover from a loss episode, and
you must have enough new data around to keep the
ACK clock running. This is implemented as follows:

 Multiple Packet Loss: A fix for Fast Recovery to

prevent starting Fast Retransmit and Fast Recovery in
succession when multiple segments are dropped in
the same window. When entering Fast Retransmit
(from 3 duplicate ACKs), have the highest sequence
number sent so far. Perform retransmission and the
Fast Recovery algorithm as usual (set threshold,
inflating congestion window on duplicate ACKs).
When a new ACK arrives, perform the addition check
if the ACK covers the highest sequence number sent
when Fast Retransmit was invoked. If not, this ACK
is a partial ACK and signals that another segment was
lost from the same window of data. As such,
retransmit the segment reported as expected by the
partial ACK, reset the retransmission timer but do not
exit Fast Recovery. On the other hand, if the new
ACK covers the highest sequence number sent and
then exit Fast Recovery but setting congestion
window to threshold and performing congestion
avoidance.

 False Fast Retransmit: Record the highest sequence
number ever transmitted after a retransmission
timeout (normally set to 0). Whenever we get 3
duplicate ACKs, we perform a test to see if we should
enter Fast Retransmit. If these ACKs cover the
sequence number saved at the previous timeout, then
this is a new invocation of the Fast Retransmit. In this
case, enter Fast Retransmit and perform the related
actions. If they do not cover the sequence numbers
(i.e. they ACK segments sent previous to the timeout)
then just acknowledge the receipt of already queued
segments at the receiver. In this case, do not enter
Fast Retransmit. Sender comes out of Fast Recovery
only after all outstanding packets (at the time of first
loss) are ACKed.

4.4. SACK TCP

The SACK option follows the format in the
RFC2018. The SACK option field contends a number

World Rural Observations 2021;13(4) http://www.sciencepub.net/ruralWRO

53

of SACK blocks, where each SACK block report a
non-contiguous set of data that has been received and
queued. The first block in a SACK option is required to
report the data receiver’s most recently received
segment, and the additional SACK blocks repeat the
most recently reported SACK blocks.

The congestion control algorithms
implemented in our SACK TCP area conservative
extension of Reno’s congestion control, in that they use
the same algorithms for increasing and decreasing the
congestion window, and make minimal changes to the
other congestion control algorithms. Adding SACK to
TCP does not change the basic underlying congestion
control algorithms. The SACK TCP implementation
preserves the properties of Tahoe and Reno TCP of
being robust in the presence of out-of-order packets,
and uses retransmit timeouts as the recovery method of
last resort. The main difference between the SACK
TCP implementation and the Reno TCP
implementation is in the behavior when multiple
packets are dropped from one window of data.
 As in Reno, the SACK TCP implementation
enters Fast Recovery when the data sender receives
duplicate acknowledgements. The sender retransmits a
packet and cut the congestion window in half. During
Fast Recovery, SACK maintains a variable called
“pipe” that represents the estimated number of packets
outstanding in the path; this differs from the
implementation in the Reno implementation. The
sender only sends new or retransmitted data when the
estimated number of packets in the path is less than the
congestion window. The variable “pipe” is incremented
by one when the sender either sends a new packet or
retransmits an old packet. It is decremented by one
when the sender receives a duplicate ACK packet with
a SACK option reporting the new data has been
received at the receiver. Use of the “pipe” variables
decouples the decision of when to send a packet from
the decision of which packet to send. The sender
maintains a data structure, the scoreboard that
remembers acknowledgement from previous SACK
option. When the sender is allowed a packet, it
retransmits the next packet from the list of packets
inferred to be missing at the receiver. If there are no
such packets and the receiver’s advertised window is
sufficiently large, the sender sends a new packet. When
a retransmitted packet is itself dropped, the SACK
implementation detects the drop with a retransmit
timeout, retransmitting the dropped packet and then
Slow-Starting. The sender exits Fast Recovery when a
recovery acknowledgement is received acknowledging
all data that was outstanding when Fast Recovery was
entered.
 The SACK sender has special handling for
partial ACKs (ACKs received during Fast Recovery
that advance the Acknowledgement Number field of

the TCP header, but do not take the sender out of Fast
Recovery). For partial ACKs, the sender decrements
“pipe” by two packets rather than one, as follows.
When Fast Retransmit is initiated, “pipe” is effectively
decremented by one for the packet that was assumed to
have been dropped, and then incremented by one for
the packet that was retransmitted. Thus, decrementing
the “pipe” by two packets when the first partial ACK is
received is in some sense “cheating”, as that partial
ACK only represents one packet having left the pipe.
However, for any succeeding partial ACKs, “pipe” was
incremented when the retransmitted packet entered the
pipe, but was never decremented for the packet
assumed to have been dropped. Thus, when the
succeeding partial ACK arrives, it does in fact represent
two packets that have left the “pipe”: the original
packet (assumed to have been dropped), and the
retransmitted packet. Because the sender decrements
“pipe” by two packets rather than one for partial ACKs,
the SACK sender never recovers more slowly than a
Slow-Start. The “maxburst” parameter, which limits the
number of packets that can be sent in response to a
single incoming ACK packet, is experimental, and is
not necessarily recommended for SACK
implementation.

There are a number of other proposals for TCP
congestion control algorithm using selective
acknowledgements (Mathis & Mahdavi, 1996). The
SACK implementation in our simulator is designed to
be the most conservative extension of the Reno
congestion control algorithms, in that it makes the
minimum changes to Reno’s existing congestion
control algorithms.

5. Simulations Environment

The simulator we have used to simulate the
Mobile Ad-hoc Networks routing protocols over TCP is
the Network Simulator 2 (NS-2) from Berkeley. To
simulate the mobile wireless radio environment we
have used a mobility extension to NS that is developed
by the CMU Monarch project at Carnegie Mellon
University. NS-2 along with CMU-extension provides
support for all TCP implementation and routing
protocols (DSDV, DSR and AODV) that we have used
in this research paper. All of these protocols are used
with their basic configurations and no changes have
been made.

5.1 Simulation Objective

In this paper we are interested in finding out
that how background traffic effects the relative
performance of TCP. The traffic generated by the
source node is not the only traffic which can create
congestion and can affect TCP and routing protocols
performance. Selected routing protocols (DSDV DSR
and AODV) are simulated with different TCP variants

World Rural Observations 2021;13(4) http://www.sciencepub.net/ruralWRO

54

(Tahoe, NewReno and SACK). TCP performance can
be measured in TCP congestion window, TCP
throughput, number of packets sent, number of
acknowledgement received, round trip time etc. We
have collected data about these parameters and
concluded created my results.

5.2 Simulation Scenario

My scenario consists of three wireless nodes
over the area of a size of 500m x 400m. A TCP
connection is established between the node(0) and
node(1) with having background traffic. The initial
location of the node(0), node(1) and node(2) as shown
in Figure 1, are receptively (5, 5), (490, 285) and (150,
240), whereas the z co-ordinate is assumed to be 0.

5.3. Traffic Pattern

The traffic pattern defines the way in which
the mobile node moves in a scenario. The traffic pattern
for the three mobile nodes in the simulation scenario is
defined in such a way that they remain in each other’s
radio range for the maximum of simulation time, so
that the TCP connection should be remained open. The
traffic pattern is: at time 10, node(0) starts moving
towards point (250, 250) at the speed of 3 m/sec, at
time 15, node (1) starts moving towards point (48, 285)
at a speed of 5 m/sec, at time 110, node(0) starts
moving towards point (480, 300) at a speed of 5 m/sec
and at time 110, node(1) starts moving towards point
(10,150) at a speed of 5 m/sec. Node(2) is kept static in
the simulation. It will just act as a relay between
node(0) and node(1) to help in increasing the
connection time and introduces an imaginary
propagation and processing delay. The duration of the
simulation is kept 150 seconds, as it is the maximum
time to get the required results.

Figure 1. Initial nodes position.

6. Connection Pattern
The connection pattern defines that who is

connected to whom in the simulation scenario. In
simulation scenario a TCP connection is established
between node(0) and node(1). The background traffic
is discussed later on. Node(0) acts as TCP source and
node(1) acts as a TCP sink. TCP source sends TCP
packets and TCP sink sends acknowledgements back to
the source. The TCP packet size is set to its original
length (1000Kb). Node(0) sends FTP packets. At time
12.0 FTP transmission starts, but when node(0) and
node(1) comes in each other radio range or in the radio
range of node(2), TCP connection will be created and
data transmission will take place.

6.1 Background Traffic

Most of the research work has ignored the real
world problems and therefore they are less applicable
to the real world environment. This simulation is
designed with real world interference in mind caused
by background traffic and other factors. Only
background traffic is considered in this paper.
 The background traffic consists of three UDP
sessions communicating at a constant bit rate (CBR).
The packet size is 512 bytes and the interval is 0.25
second so the total background traffic for 130 seconds
of the simulation is 260kbps. At 15 second just after
the FTP traffic starts at 12 second node(2) establish a
UDP connection with node(0) and starts
communicating up to 65 second at a constant bit rate.
After this at 66 second node(2) initiates a UDP
connection with node(1) up to 100 second. Similarly a
third UDP connection is established between node(0)
and node(1) from 101 to 149 second. The background
traffic is designed in such a way to provide maximum
interference to the communication nodes.

7. Results

In this section, we will discuss the results that
have been achieved after running the simulation script
written in OTCL. We have used different Mobile Ad-
Hoc Networks routing protocol and TCP algorithms,
therefore have discussed them one by one. The overall
results obtained are shown in Table 4.

7.1. TCP Algorithms with DSDV

When DSDV is simulated with different TCP
algorithms, the results obtained are show in Figure : 2.
A detailed statistics of the number of packets lost,
ACKs lost, and throughput in percentage is shown in
the Table 1.

7.2. TCP algorithms with DSR:
 When DSR was simulated with the three
algorithms of TCP the results obtained are shown in
Figure 3. A detailed statistics of the number of packets

World Rural Observations 2021;13(4) http://www.sciencepub.net/ruralWRO

55

lost, ACKs lost, and throughput in percentage is shown
in the Table 2.

7.3. TCP algorithms with AODV:
 When AODV was simulated with the three

algorithms of TCP the results obtained are shown in
Figure 4. A detailed statistics of the number of packets
lost, ACKs lost, and throughput in percentage is shown
in the Table 3.

Figure 2. DSDV results with Tahoe, NewReno, and SACK.

Table 1. TCP algorithms with DSDV

S.No Routing
Protocol

TCP
Variant

Transmitted
Bytes

Acknowledged
Packets

Throughput Lost
Packet

Throughput %

1 DSDV Tahoe 5079000 5052 33835.89 7.0 0.666

2 DSDV NewReno 5079000 5052 33835.89 7.0 0.666

3 DSDV SACK 5105000 5077 34002.67 8.0 0.666

0

10
20
30
40
50
60

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

0 50 100 150 200

SACK Throughput with DSDV

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200

Newreno Throughput with DSDV

0
5000

10000

15000
20000
25000
30000
35000

40000
45000

0 50 100 150 200

Tahoe Throughput with DSDV

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

0 50 100 150 200

SACK Congestion Window with DSDV

0

20

40

60

80

100

120

0 50 100 150

0

20

40

60

80

100

120

0 50 100 150 200

0

20

40

60

80

100

120

0 50 100 150 200

Tahoe Congestion Window with DSDV NewReno Congestion Window with DSDV

Tahoe Round Trip Time with DSDV NewReno Round Trip Time with DSDV SACK Round Trip Time with DSDV

World Rural Observations 2021;13(4) http://www.sciencepub.net/ruralWRO

56

Table 2. TCP algorithms with DSR
S.N
o

Routing
Protocol

TCP
Variant

Transmitted
Bytes

Ack_Pa
ck

Throughp
ut

Lost Packet Throughput %

1 DSR SACK 665000 6628 44322.88 6.0 6.66
2 DSR Tahoe 6652000 6629 44269.51 16.0 0.665
3 DSR Newreno 6649000 6626 44289.53 10.0 0.666

Figure 3. DSDV results with Tahoe, NewReno, and SACK.

Table 3. TCP algorithms with AODV
S.No Routing

Protocol
TCP
Variant

Transmitted
Bytes

Ack_Pack Throughput Lost
Packet

Throughput
%

1 AODV Newreno 3764000 3739 25076.72 5.0 0.666
2 AODV SACK 3764000 3739 25076.72 5.0 0.666
3 AODV Tahoe 3764000 3739 25076.72 5.0 0.666

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160

Tahoe Round Trip Time with DSR

0

10
20
30
40
50
60
70

0 40 60 120 140 20

SACK Throughput with DSR

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200

NewReno Throughput with DSR

0

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000

0 50 100 150 200

Tahoe Throughput with DSR

0

5000
10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200

0

20

40

60

80

100

120

0 50 100 150 200

0

20

40

60

80

100

120

0 50 100 150 200

NewReno Congestion Window with DSR Tahoe Congestion Window with DSR

0

20

40

60

80

100

120

0 50 100 150 200

SACK Congestion Window with DSR

NewReno Round Trip Time with DSR SACK Round Trip Time with DSR

World Rural Observations 2021;13(4) http://www.sciencepub.net/ruralWRO

57

Table 4. Overall comparision

S.No Routing
Protocol

TCP
Variant

Transmitted
Bytes

Ack_Pack Throughput Lost
Packet

Throughput
%

1 DSR SACK 665000 6628 44322.88 6.0 6.66
2 DSR Tahoe 6652000 6629 44269.51 16.0 0.665
3 DSR Newreno 6649000 6626 44289.53 10.0 0.666
4 DSDV SACK 5105000 5077 34002.67 8.0 0.666
5 DSDV Tahoe 5079000 5052 33835.89 7.0 0.666
6 DSDV Newreno 5079000 5052 33835.89 7.0 0.666
7 AODV SACK 3764000 3739 25076.72 5.0 0.666
8 AODV Tahoe 3764000 3739 25076.72 5.0 0.666
9 AODV Newreno 3764000 3739 25076.72 5.0 0.666

Figure 4. AODV results with Tahoe, NewReno, and SACK.

0

10
20
30
40
50
60
70

0 50 100 150
0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200

0
5000

10000

15000

20000

25000

30000

0 50 100 150 200

Tahoe Throughput with AODV

0
5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

SACK Congestion Window - AODV NewReno Congestion Window - AODV

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

Tahoe Congestion Window - AODV

NewReno Throughput with AODV SACK Throughput with AODV

Tahoe Round Trip Time with AODV NewReno Round Trip Time with AODV SACK Round Trip Time with AODV

World Rural Observations 2021;13(4) http://www.sciencepub.net/ruralWRO

58

8. Conclusion

Several factors can affect the underlying TCP
performance. Routing protocols are important for finding
a route to the destination for information packet delivery.
Routing protocols are designed in such away to find the
route accurately and quickly. In Mobile Ad-hoc
Networks, nodes are always mobile therefore route-
changing possibilities are dominant. Routing protocols are
their best in finding the optimised route to make the
communication possible. Is routing protocols working
mechanisms have any effect on the underlying TCP
performance? What is the effect of background traffic on
TCP performance?

This paper has presented a performance
comparison of the DSDV, DSR and AODV routing
protocols when combined with varying TCP algorithms
along with background traffic. After briefly studying
and discussion, it has been found that routing protocols
have effects on the underlying TCP performance. In
case of 260kbps background traffic no routing protocol
produced more than 0.66% of throughput except DSR.
DSR when evaluated with SACK TCP gave extremely
good results almost ten folds more than the others i.e.
6.66% throughput. AODV is consistent with all of the
TCP algorithms tested. Similarly, AODV is found very
slow in connection establishment as compared to
DSDV and DSR and therefore very low amount of data
is transmitted .i.e. the amount of transmitted bytes is
less than DSR and DSDV. The same combination when
was evaluated without background traffic. It was found
that 16.26 % drop was observer in the total transmitted
bytes.

Thus none of the MANETs routing protocol is
found of providing optimised performance with all of
the TCP algorithms. A good routing protocol should be
one having consistent and good performance with all of
the TCP algorithms as different operating systems
comes with implementation of different underlying
TCP implementation. Anyway by comparison, it is
found that DSR produces good performance with all of
the TCP algorithms as compared to DSDV and AODV
but AODV is consistent with all of the TCP algorithms.
Thus it can be concluded that source initiated on-
demand routing protocols can produce good results
with TCP algorithms, even in the case of background
traffic, although further study of additional source
initiated on-demand routing protocols is needed to
validate this result.

Corresponding Author:
Salman Faiz Solheria
Department of Computer Science
Sarhad University of Science & Technology
KPK, Pakistan
E-mail: salman@suit.edu.pk

References
1. Bakht, H. A Study of Routing Protocols for Mobile

Ad-hoc Networks. In proceedings of the 1st
International Computer Engineering Conference
2004, Cairo , Egypt, 2010.

2. Broch J, Maltz DA, Johnson DB, Hu YC, Jetcheva
J. A performance comparison of multi-hop wireless
ad hoc network routing protocols. Paper presented
at the Proceedings of the 4th annual ACM/IEEE
international conference on Mobile computing and
networking 1998, Dellas, Texas, USA, 1998; 85-
97.

3. Clark DD, Hoe JC. Start-up Dynamics of TCP’s
Congestion Control and Avoidance Schemes.
Tchnical Report, Massachusetts Institute of
Technology 1995.

4. Comer DE, Stevens DL. Internetworking with
TCP/IP (vol. 2, 2nd ed.): design, implementation,
and internals. Prentice-Hall Inc. 1994; 612.

5. Das SR, Casta R, Yan J. Simulation-based
performance evaluation of routing protocols for
mobile ad hoc networks. Mob. Netw. Appl. 2000;
5(3):179-189.

6. Dyer TD, Boppana RV. A comparison of TCP
performance over three routing protocols for
mobile ad hoc networks. In proceedings of the 2nd
ACM international symposium on Mobile ad hoc
networking & computing 2001, Long Beach, CA,
USA; 56-66.

7. Fall K, Floyd S. Simulation-based comparisons of
Tahoe, Reno and SACK TCP. SIGCOMM
Comput. Commun. Rev. 1996; 26(3): 5-21.

8. Hoe JC. Start-up Dynamics of TCP’s Congestion
Control and Avoidance Schemes. Master Thesis,
Master of Science in Electrical Engineering and
Computer Science, Massachusetts Institute of
Technology, Massachusetts, USA, 1995;69.

9. Jacobson V. Congestion avoidance and control.
SIGCOMM Comput. Commun. Rev. 1995;
25(1):157-187.

10. Johansson P, Larsson T, Hedman N, Mielczarek B,
Degermark, M. Scenario-based performance
analysis of routing protocols for mobile ad-hoc
networks. In proceedings of the 5th annual
ACM/IEEE international conference on Mobile
computing and networking 1999, Seattle,
Washington, USA, 1999;195-206.

11. Johnson DB, Maltz DA. Dynamic Source Routing
in Ad Hoc Wireless Networks. Mobile Computing
1996; 153-181.

12. Johnson DB, Maltz DA. Truly seamless wireless
and mobile host networking. Protocols for adaptive
wireless and mobile networking. IEEE Personal
Communications 1996; 3(1): 34-42.

World Rural Observations 2021;13(4) http://www.sciencepub.net/ruralWRO

59

13. Mathis M, Mahdavi J. Forward acknowledgement:
refining TCP congestion control. SIGCOMM
Comput. Commun. Rev. 1996; 26(4): 281-291.

14. Perkins CE, Bhagwat P. Highly dynamic
Destination-Sequenced Distance-Vector routing
(DSDV) for mobile computers. SIGCOMM
Comput. Commun. Rev. 1994; 24(4): 234-244.

15. Perkins CE, Royer EM. Ad-hoc On-Demand
Distance Vector Routing. In proceedings of the
Second IEEE Workshop on Mobile Computer
Systems and Applications 1999;90.

16. Pucha H, Das SM, Hu YC. The performance impact
of traffic patterns on routing protocols in mobile ad
hoc networks. In proceedings of the 7th ACM
international symposium on Modeling, analysis
and simulation of wireless and mobile systems
2004, Venice, Italy, 2004;211-219.

17. Steenstrup M. (Ed.). Routing in communications
networks: Prentice Hall International (UK) Ltd,
1995; 399.

18. Trung HD, Benjapolakul W, Duc PM.
Performance evaluation and comparison of
different ad hoc routing protocols. Comput.
Commun. 2007; 30(11-12): 2478-2496.

2/15/2021

