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Abstract: TCP is the major component of computer network whether it’s wired or wireless. The standard TCP was 
developed for wired network. In Mobile Ad Hoc Network (MANETs) legacy TCP performs poorly and require 
drastic changes. All most, all TCP performance studies are based on such simulations in which the real world 
problems are ignored such as background traffic or other interference caused by WiFi hotspot and other devices in 
range. In order to delve the effect of background traffic on the relative TCP performance, a simulation has been 
developed to model the back ground traffic.  This paper studies the effect of routing protocols on TCP performance 
with background traffic. Three different routing protocols (AODV, DSDV, and DSR) are evaluated with three 
different TCP variants (SACK, NewReno, Tahoe). The performances parameters that are calculated in this paper are 
throughput, congestion window and end to end delay etc. It was deduced from the simulation results that SACK 
TCP produces 6.66 % throughput with DSR while no other combination produces more than 0.66 % throughput.  
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1. Introduction 

Due to the rapid growth in technology Mobile 
Ad hoc network is becoming part of life day by day. 
Mobile Ad-hoc Networks (MANETS) exchange 
information in a wireless environment between a 
numbers of autonomous nodes and forming a multi hop 
radio network without any pre-existing infrastructure 
and base station i.e. the nodes communicates directly 
with one another in a peer-to-peer fashion. The 
incredible growth of private computers and the clever 
usage of mobile computers necessitate the need to 
sharing of information among computers. Currently this 
sharing of information is complex, as the users need to 
perform administrative tasks and set up static, bi-
directional links between the computers. This motivates 
the construction of temporary networks with no wires 
and no communication infrastructure and no 
administrative intervention required. Such an 
interconnection between mobile computers is called an 
Ad-hoc Network.  In such a setting, it may be necessary 
for the mobile computers to take help of other 
computers in forwarding a packet to the destination due 
to the limited scope of each Mobile host’s wireless 
transmission. 
 
2. Relative Work 

Although some related work has been carried 

out in (Bakht, 2004) (Das et al., 2000) (Dyer and 
Boppana, 2001) (Johansson et al., 1999) (Pucha et al., 
2004) (Trung et al., 2007) but they have encountered 
other factors (i.e. node density, mobility, node pause 
times traffic, delay, large topology area etc) that can 
effect TCP performance significantly and have not 
justified the actual affect of the routing protocols on 
TCP performance. A closely related work is carried out 
in (Fall and Floyd, 1996), but it is based on the fixed 
wired networks not on Mobile Ad-Hoc Networks. 
Another closest work has been done by (Pucha et al., 
2004) but they have changed node density and node 
pause times and have not touched background traffic.  
 
3. Routing Algorithm 

We have considered mainly three routing 
algorithms i.e. DSDV, DSR and AODV. These routing 
protocols are analyzed with different variants of TCP.  
 
3.1. Destination Sequenced Distance Vector-DSDV  

DSDV (Perkins and Bhagwat, 1994) is a hop-
by-hop distance vector routing protocol that in each 
node has a routing table that for all reachable 
destinations stores the next-hop and number of hops for 
that destination. Like distance-vector, DSDV requires 
that each node periodically broadcast routing updates. 
The advantage with DSDV over traditional distance 
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vector protocols is that DSDV guarantees loop-
freedom. To guarantee loop-freedom DSDV uses a 
sequence numbers to tag each route. The sequence 
number shows the freshness of a route and routes with 
higher sequence numbers are favorable. A route R is 
considered more favorable than R' if R has a greater 
sequence number or, if the routes have the same 
sequence number but R has lower hop-count. The 
sequence number is increased when a node A detects 
that a route to a destination D has broken. So the next 
time node A advertises its routes, it will advertise the 
route to D with an infinite hop-count and a sequence 
number that is larger than before. DSDV basically is 
distance vector with small adjustments to make it better 
suited for ad-hoc networks. These adjustments consist 
of triggered updates that will take care of topology 
changes in the time between broadcasts. To reduce the 
amount of information in these packets there are two 
types of update messages defined, full and incremental 
dump. The full dump carries all available routing 
information and the incremental dump that only carries 
the information that has changed since the last dump.  
 
3.2. Ad-hoc On Demand Distance Vector-AODV  

The Ad Hoc On-Demand Distance Vector 
(AODV) (Perkins and Royer, 1999) routing protocol 
enables multi-hop routing between participating mobile 
nodes wishing to establish and maintain an ad-hoc 
network. AODV is based upon the distance vector 
algorithm. The difference is that AODV is reactive, as 
opposed to proactive protocols like DV, i.e. AODV 
only requests a route when needed and does not require 
nodes to maintain routes to destinations that are not 
actively used in communications. As long as the 
endpoints of a communication connection have valid 
routes to each other, AODV does not play any role. 
Features of this protocol include loop freedom and that 
link breakages cause immediate notifications to be sent 
to the affected set of nodes, but only that set. 
Additionally, AODV has support for multicast routing 
and avoids the Bellman Ford "counting to infinity" 
problem (Steenstrup, 1995). The use of destination 
sequence numbers guarantees that a route is "fresh". 
The algorithm uses different messages to discover and 
maintain links. Whenever a node wants to try and find a 
route to another node, it broadcasts a Route Request 
(RREQ) to all its neighbors. The RREQ propagates 
through the network until it reaches the destination or a 
node with a fresh enough route to the destination. Then 
the route is made available by unicasting a RREP back 
to the source.  

The algorithm uses hello messages (a special 
RREP) that are broadcasted periodically to the 
immediate neighbors. These hello messages are local 
advertisements for the continued presence of the node 
and neighbors using routes through the broadcasting 

node will continue to mark the routes as valid. If hello 
messages stop coming from a particular node, the 
neighbor can assume that the node has moved away and 
mark that link to the node as broken and notify the 
affected set of nodes by sending a link failure 
notification (a special RREP) to that set of nodes.  
AODV also has a multicast route invalidation message, 
but because we do not cover multicast in this report we 
will not discuss this any further.  
 For routing table management, AODV needs 
to keep track of the following information for each 
route table entry:  
 
1. Destination IP Address: IP address for the destination 

node.  
2. Destination Sequence Number: Sequence number for 

this destination. 
3.  Hop Count: Number of hops to the destination.  
4.  Next Hop: The neighbor, which has been designated 

to forward packets to the destination for this route 
entry.  

5. Lifetime: The time for which the route is considered 
valid.  

6. Active neighbor list: Neighbor nodes that are actively 
using this route entry.  

7. Request buffer: Makes sure that a request is only 
processed once.  

 
 For route discovery, a node broadcasts a 
RREQ when it needs a route to a destination and does 
not have one available. This can happen if the route to 
the destination is unknown, or if a previously valid 
route expires. After broadcasting a RREQ, the node 
waits for a RREP. If the reply is not received within a 
certain time, the node may rebroadcast the RREQ or 
assume that there is no route to the destination. 
Forwarding of RREQs is done when the node receiving 
a RREQ does not have a route to the destination. It then 
rebroadcast the RREQ. The node also creates a 
temporary reverse route to the Source IP Address in its 
routing table with next hop equal to the IP address field 
of the neighboring node that sent the broadcast RREQ. 
This is done to keep track of a route back to the original 
node making the request, and might be used for an 
eventual RREP to find its way back to the requesting 
node. The route is temporary in the sense that it is valid 
for a much shorter time, than an actual route entry. 
When the RREQ reaches a node that either is the 
destination node or a node with a valid route to the 
destination, a RREP is generated and unicasted back to 
the requesting node. While this RREP is forwarded, a 
route is created to the destination and when the RREP 
reaches the source node, there exists a route from the 
source to the destination. 
 For route maintenance, when a node detects 
that a route to a neighbor no longer is valid, it will 
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remove the routing entry and send a link failure 
message, a triggered route reply message to the 
neighbors that are actively using the route, informing 
them that this route no longer is valid. For this purpose 
AODV uses a active neighbor list to keep track of the 
neighbors that are using a particular route. The nodes 
that receive this message will repeat this procedure. 
The message will eventually be received by the 
affected sources that can chose to either stop sending 
data or requesting a new route by sending out a new 
RREQ.  
 
3.3. Dynamic Source Routing - DSR  

Dynamic Source Routing (DSR) (Broch et al., 
1998) (Johnson and Maltz, 1996) (Johnson and Maltz, 
1996) also belongs to the class of reactive protocols and 
allows nodes to dynamically discover a route across 
multiple network hops to any destination. Source 
routing means that each packet in its header carries the 
complete ordered list of nodes through which the 
packet must pass. DSR uses no periodic routing 
messages (e.g. no router advertisements), thereby 
reducing network bandwidth overhead, conserving 
battery power and avoiding large routing updates 
throughout the ad-hoc network. Instead DSR relies on 
support from the MAC layer (the MAC layer should 
inform the routing protocol about link failures). The 
two basic modes of operation in DSR are route 
discovery and route maintenance.  

Route discovery: Route discovery is the 
mechanism whereby a node X wishing to send a packet 
to Y, obtains the source route to Y. Node X requests a 
route by broadcasting a Route Request (RREQ) packet. 
Every node receiving this RREQ searches through its 
route cache for a route to the requested destination. 
DSR stores all known routes in its route cache. If no 
route is found, it forwards the RREQ further and adds 
its own address to the recorded hop sequence. This 
request propagates through the network until either the 
destination or a node with a route to the destination is 
reached. When this happen a Route Reply (RREP) is 
unicasted back to the originator. This RREP packet 
contains the sequence of network hops through which it 
may reach the target.  In Route Discovery, a node first 
sends a RREQ with the maximum propagation limit 
(hop limit) set to zero, prohibiting its neighbors from 
rebroadcasting it. At the cost of a single broadcast 
packet, this mechanism allows a node to query the 
route caches of all its neighbors. Nodes can also 
operate their network interface in promiscuous mode, 
disabling the interface address filtering and causing the 
network protocol to receive all packets that the 
interface overhears. These packets are scanned for 
useful source routes or route error messages and then 
discarded. The route back to the originator can be 
retrieved in several ways. The simplest way is to 

reverse the hop record in the packet. However this 
assumes symmetrical links. To deal with this, DSR 
checks the route cache of the replying node. If a route 
is found, it is used instead. Another way is to 
piggyback the reply on a RREQ targeted at the 
originator. This means that DSR can compute correct 
routes in the presence of asymmetric (unidirectional) 
links. Once a route is found, it is stored in the cache 
with a time stamp and the route maintenance phase 
begins.  

Route maintenance is the mechanism by which 
a packet sender S detects if the network topology has 
changed so that it can no longer use its route to the 
destination D. This might happen because a host listed 
in a source route, move out of wireless transmission 
range or is turned off making the route unusable. A 
failed link is detected by either actively monitoring 
acknowledgements or passively by running in 
promiscuous mode, overhearing that a packet is 
forwarded by a neighboring node. When route 
maintenance detects a problem with a route in use, a 
route error packet is sent back to the source node. 
When this error packet is received, the hop in error is 
removed from this hosts route cache, and all routes that 
contain this hop are truncated at this point. 

 
4. Transmission Control Protocol-TCP 

Although TCP is free from the underlying 
network technologies, some assumptions in its 
characteristics are clearly inspired for wired networks 
dominant at the time when it was conceived. TCP 
implicitly assume that modes are static (i.e. they do not 
change their position over time) and packet loss is due 
to congestion causing buffer overflows at the 
intermediate nodes (routers).This assumption does not 
hold in MANETs as the network topology may change 
due to node movement and failure (e.g. because the 
battery is exhausted). Packet losses due to buffer 
overflow are rare events in MANET. Therefore the 
legacy TCP performs badly in MANETs.  

 
4.1. Tahoe TCP 

Tahoe by Jacobson (Jacobson, 1995) assumed 
that congestion signals are represented by lost 
segments. It was assumed by Jacobson that losses due 
to packet corruption are much less probable than losses 
due to buffer overflows on the network. Therefore, on a 
loss, the sender should lower its share of the bandwidth. 
Tahoe TCP includes Slow-Start, Congestion Avoidance 
and Fast Retransmit. Tahoe TCP detect packet loss by 
either expiring RTO or receiving 3 duplicate ACKs.  In 
case of receiving 3 duplicate ACKs Tahoe TCP 
retransmits the lost packet without having to wait for 
the RTO to expire. As RTO is relatively quite enough 
to transmit a packet, this process is called Fast 
Retransmit. Upon receiving a congestion signal Tahoe 
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TCP sets its threshold value to half of the value of the 
congestion window just before the lost is recorded and 
congestion window is set to 1 MSS and enters into slow 
start. This process is called congestion avoidance. 
Tahoe TCP does not deal well with multiple packet loss 
within a single window of data. 

 
4.2. Reno TCP 

Reno TCP introduced a major improvement 
over Tahoe TCP by detecting packet loss via time out 
and not via duplicate ACKs. Upon receiving duplicate 
ACKs, Reno TCP does not enter into Slow-Start but 
into Fast Recovery, which should be activated after 
Fast Retransmit. 

In Fast Recovery, threshold value is set to half 
of the congestion window. The congestion window is 
set to threshold plus 3 * MSS (Where 3 is the number 
of duplicate ACKs required to trigger Fast Retransmit). 
Upon the receipt of each duplicate ACK, the congestion 
window is inflated by one segment as each duplicate 
ACK signals the fact that another packet has left the 
network. After receiving W/2 duplicate ACKs (where 
W is the size of congestion window before receiving 
the duplicate ACKs), the window will be ready to 
include new packets. When all of the duplicate ACKs 
are received, the congestion window is set to threshold 
value (W/2). After this congestion window is increased 
one packet at a time. In case of RTO Reno TCP 
exhibits the same behavior as Tahoe TCP. Although 
Reno TCP is better than Tahoe TCP in dealing with 
single packet loss, Reno TCP is not better when 
multiple packets are lost within a single window of data 
(Jacobson, 1995). In the Internet, packets are often 
transmitted in bursts (Comer and Stevens, 1994). As a 
result, losses often happen in bursts. This is primarily 
due to FIFO (Drop Tail) queues in routers. Therefore 
Reno TCP faces problems because of its Fast Recovery 
and Fast Retransmit (which can lead to impacting 
throughput of the connection). Two solutions are 
provided to overcome Reno TCP multiple packets loss 
problem: NewReno TCP and SACK TCP. 

 
4.3. NewReno TCP 

NewReno modifies the Fast Retransmit and 
Fast Recovery. These modifications are intended to fix 
the Reno problems above and are wholly implemented 
in the sender side. A modification of Reno lead to 
NewReno TCP which shows that Reno can be 
improved without the addition of SACKs but still 
suffers without it. Here, the wait for a retransmit timer 
is eliminated when multiple packets are lost from a 
window. NewReno is the same as Reno but with more 
intelligence during Fast Recovery (Clark and Hoe, 
1995) (Hoe, 1995). It utilizes the idea of partial ACKs: 
when there are multiple packet drops, the ACKs for the 
retransmitted packet will acknowledge some, but not all 

the segments send before the Fast Retransmit. In TCP 
Reno, the first partial ACK will bring the sender out of 
the Fast Recovery phase. This will result in the 
requirement of timeouts when there are multiple losses 
in a window, and thus stalling the TCP connection.  

In NewReno, a partial ACK is taken as an 
indication of another lost packet and as such the sender 
retransmits the first unacknowledged packet. Unlike 
Reno, partial ACKs don't take NewReno out of Fast 
Recovery. This way, it retransmits one packet per RTT 
until all the lost packets are retransmitted and avoids 
requiring multiple Fast Retransmits from a single 
window of data.  The downside of this is that it may 
take many RTT's to recover from a loss episode, and 
you must have enough new data around to keep the 
ACK clock running. This is implemented as follows: 

 
 Multiple Packet Loss: A fix for Fast Recovery to 

prevent starting Fast Retransmit and Fast Recovery in 
succession when multiple segments are dropped in 
the same window. When entering Fast Retransmit 
(from 3 duplicate ACKs), have the highest sequence 
number sent so far. Perform retransmission and the 
Fast Recovery algorithm as usual (set threshold, 
inflating congestion window on duplicate ACKs). 
When a new ACK arrives, perform the addition check 
if the ACK covers the highest sequence number sent 
when Fast Retransmit was invoked. If not, this ACK 
is a partial ACK and signals that another segment was 
lost from the same window of data. As such, 
retransmit the segment reported as expected by the 
partial ACK, reset the retransmission timer but do not 
exit Fast Recovery. On the other hand, if the new 
ACK covers the highest sequence number sent and 
then exit Fast Recovery but setting congestion 
window to threshold and performing congestion 
avoidance. 

 False Fast Retransmit: Record the highest sequence 
number ever transmitted after a retransmission 
timeout (normally set to 0). Whenever we get 3 
duplicate ACKs, we perform a test to see if we should 
enter Fast Retransmit. If these ACKs cover the 
sequence number saved at the previous timeout, then 
this is a new invocation of the Fast Retransmit. In this 
case, enter Fast Retransmit and perform the related 
actions. If they do not cover the sequence numbers 
(i.e. they ACK segments sent previous to the timeout) 
then just acknowledge the receipt of already queued 
segments at the receiver. In this case, do not enter 
Fast Retransmit. Sender comes out of Fast Recovery 
only after all outstanding packets (at the time of first 
loss) are ACKed. 

 
4.4. SACK TCP 

The SACK option follows the format in the 
RFC2018. The SACK option field contends a number 
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of SACK blocks, where each SACK block report a 
non-contiguous set of data that has been received and 
queued. The first block in a SACK option is required to 
report the data receiver’s most recently received 
segment, and the additional SACK blocks repeat the 
most recently reported SACK blocks. 

The congestion control algorithms 
implemented in our SACK TCP area conservative 
extension of Reno’s congestion control, in that they use 
the same algorithms for increasing and decreasing the 
congestion window, and make minimal changes to the 
other congestion control algorithms. Adding SACK to 
TCP does not change the basic underlying congestion 
control algorithms. The SACK TCP implementation 
preserves the properties of Tahoe and Reno TCP of 
being robust in the presence of out-of-order packets, 
and uses retransmit timeouts as the recovery method of 
last resort. The main difference between the SACK 
TCP implementation and the Reno TCP 
implementation is in the behavior when multiple 
packets are dropped from one window of data. 
 As in Reno, the SACK TCP implementation 
enters Fast Recovery when the data sender receives 
duplicate acknowledgements. The sender retransmits a 
packet and cut the congestion window in half. During 
Fast Recovery, SACK maintains a variable called 
“pipe” that represents the estimated number of packets 
outstanding in the path; this differs from the 
implementation in the Reno implementation. The 
sender only sends new or retransmitted data when the 
estimated number of packets in the path is less than the 
congestion window. The variable “pipe” is incremented 
by one when the sender either sends a new packet or 
retransmits an old packet. It is decremented by one 
when the sender receives a duplicate ACK packet with 
a SACK option reporting the new data has been 
received at the receiver. Use of the “pipe” variables 
decouples the decision of when to send a packet from 
the decision of which packet to send. The sender 
maintains a data structure, the scoreboard that 
remembers acknowledgement from previous SACK 
option. When the sender is allowed a packet, it 
retransmits the next packet from the list of packets 
inferred to be missing at the receiver. If there are no 
such packets and the receiver’s advertised window is 
sufficiently large, the sender sends a new packet. When 
a retransmitted packet is itself dropped, the SACK 
implementation detects the drop with a retransmit 
timeout, retransmitting the dropped packet and then 
Slow-Starting. The sender exits Fast Recovery when a 
recovery acknowledgement is received acknowledging 
all data that was outstanding when Fast Recovery was 
entered. 
 The SACK sender has special handling for 
partial ACKs (ACKs received during Fast Recovery 
that advance the Acknowledgement Number field of 

the TCP header, but do not take the sender out of Fast 
Recovery). For partial ACKs, the sender decrements 
“pipe” by two packets rather than one, as follows. 
When Fast Retransmit is initiated, “pipe” is effectively 
decremented by one for the packet that was assumed to 
have been dropped, and then incremented by one for 
the packet that was retransmitted. Thus, decrementing 
the “pipe” by two packets when the first partial ACK is 
received is in some sense “cheating”, as that partial 
ACK only represents one packet having left the pipe. 
However, for any succeeding partial ACKs, “pipe” was 
incremented when the retransmitted packet entered the 
pipe, but was never decremented for the packet 
assumed to have been dropped. Thus, when the 
succeeding partial ACK arrives, it does in fact represent 
two packets that have left the “pipe”: the original 
packet (assumed to have been dropped), and the 
retransmitted packet. Because the sender decrements 
“pipe” by two packets rather than one for partial ACKs, 
the SACK sender never recovers more slowly than a 
Slow-Start. The “maxburst” parameter, which limits the 
number of packets that can be sent in response to a 
single incoming ACK packet, is experimental, and is 
not necessarily recommended for SACK 
implementation. 

There are a number of other proposals for TCP 
congestion control algorithm using selective 
acknowledgements (Mathis & Mahdavi, 1996). The 
SACK implementation in our simulator is designed to 
be the most conservative extension of the Reno 
congestion control algorithms, in that it makes the 
minimum changes to Reno’s existing congestion 
control algorithms. 
 
5. Simulations Environment 

The simulator we have used to simulate the 
Mobile Ad-hoc Networks routing protocols over TCP is 
the Network Simulator 2 (NS-2) from Berkeley. To 
simulate the mobile wireless radio environment we 
have used a mobility extension to NS that is developed 
by the CMU Monarch project at Carnegie Mellon 
University. NS-2 along with CMU-extension provides 
support for all TCP implementation and routing 
protocols (DSDV, DSR and AODV) that we have used 
in this research paper. All of these protocols are used 
with their basic configurations and no changes have 
been made. 
 
5.1 Simulation Objective 

In this paper  we are interested in finding out 
that how background traffic effects the relative 
performance of TCP. The traffic generated by the 
source node is not the only traffic which can create 
congestion and can affect TCP and routing protocols 
performance. Selected routing protocols (DSDV DSR 
and AODV) are simulated with different TCP variants 
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(Tahoe, NewReno and SACK). TCP performance can 
be measured in TCP congestion window, TCP 
throughput, number of packets sent, number of 
acknowledgement received, round trip time etc. We 
have collected data about these parameters and 
concluded created my results. 
 
5.2 Simulation Scenario 

My scenario consists of three wireless nodes 
over the area of a size of 500m x 400m. A  TCP 
connection is established between the node(0) and 
node(1) with having  background traffic. The initial 
location of the node(0), node(1) and node(2) as shown 
in Figure 1, are receptively (5, 5), (490, 285) and (150, 
240),  whereas the z co-ordinate is assumed to be 0. 

 
5.3. Traffic Pattern 

The traffic pattern defines the way in which 
the mobile node moves in a scenario. The traffic pattern 
for the three mobile nodes in the simulation scenario is 
defined in such a way that they remain in each other’s 
radio range for the maximum of simulation time, so 
that the TCP connection should be remained open. The 
traffic pattern is: at time 10, node(0) starts moving 
towards point (250, 250) at the speed of 3 m/sec, at 
time 15, node (1) starts moving towards point (48, 285) 
at a speed of 5 m/sec, at time 110, node(0) starts 
moving towards point (480, 300) at a speed of 5 m/sec 
and at time 110, node(1) starts moving towards point 
(10,150) at a speed of 5 m/sec. Node(2) is kept static in 
the simulation. It will just act as a relay between 
node(0) and node(1) to help in increasing the 
connection time and introduces an imaginary 
propagation and processing delay. The duration of the 
simulation is kept 150 seconds, as it is the maximum 
time to get the required results. 

 

 
Figure 1.  Initial nodes position. 

 

6. Connection Pattern 
The connection pattern defines that who is 

connected to whom in the simulation scenario. In 
simulation scenario a TCP connection is established 
between node(0) and node(1).  The background traffic 
is discussed later on. Node(0) acts as TCP source and 
node(1) acts as a TCP sink. TCP source sends TCP 
packets and TCP sink sends acknowledgements back to 
the source. The TCP packet size is set to its original 
length (1000Kb). Node(0) sends FTP packets. At time 
12.0 FTP transmission  starts, but when node(0) and 
node(1) comes in each other radio range or in the radio 
range of node(2), TCP connection will be created and 
data transmission will take place. 
 
6.1 Background Traffic 

Most of the research work has ignored the real 
world problems and therefore they are less applicable 
to the real world environment. This simulation is 
designed with real world interference in mind caused 
by background traffic and other factors. Only 
background traffic is considered in this paper. 
  The background traffic consists of three UDP 
sessions communicating at a constant bit rate (CBR). 
The packet size is 512 bytes and the interval is 0.25 
second so the total background traffic for 130 seconds 
of the simulation is 260kbps.  At 15 second just after 
the FTP traffic starts at 12 second node(2) establish a 
UDP connection with node(0) and starts 
communicating up to 65 second at a constant bit rate. 
After this at 66 second node(2) initiates a UDP 
connection with node(1) up to 100 second. Similarly a 
third UDP connection is established between node(0) 
and node(1) from 101 to 149 second. The background 
traffic is designed in such a way to provide maximum 
interference to the communication nodes.  
 
7. Results 

In this section, we will discuss the results that 
have been achieved after running the simulation script 
written in OTCL. We have used different Mobile Ad-
Hoc Networks routing protocol and TCP algorithms, 
therefore have discussed them one by one. The overall 
results obtained are shown in Table 4. 
 
7.1. TCP Algorithms with DSDV 

When DSDV is simulated with different TCP 
algorithms, the results obtained are show in Figure : 2. 
A detailed statistics of the number of packets lost, 
ACKs lost, and throughput in percentage is shown in 
the Table 1. 
 
7.2. TCP algorithms with DSR: 
 When DSR was simulated with the three 
algorithms of TCP the results obtained are shown in 
Figure 3.  A detailed statistics of the number of packets 
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lost, ACKs lost, and throughput in percentage is shown 
in the Table 2. 
 
7.3. TCP algorithms with AODV: 
 When AODV was simulated with the three 

algorithms of TCP the results obtained are shown in 
Figure 4.  A detailed statistics of the number of packets 
lost, ACKs lost, and throughput in percentage is shown 
in the Table 3. 
 

   

 
 

 
 

 

 

  

 

 

Figure 2.  DSDV results with Tahoe, NewReno, and SACK. 
 

                
Table 1. TCP algorithms with DSDV 

S.No Routing 
Protocol 

TCP 
Variant 

Transmitted 
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Acknowledged 
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Throughput Lost 
Packet 

Throughput % 

1 DSDV Tahoe 5079000 5052 33835.89 7.0 0.666 

2 DSDV NewReno 5079000 5052 33835.89 7.0 0.666 

3 DSDV SACK 5105000 5077 34002.67 8.0 0.666 
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Table 2. TCP algorithms with DSR 
S.N
o 

Routing 
Protocol 

TCP 
Variant 

Transmitted 
Bytes 

Ack_Pa
ck 

Throughp
ut 

Lost Packet Throughput % 

1 DSR SACK 665000 6628 44322.88 6.0 6.66 
2 DSR Tahoe 6652000 6629 44269.51 16.0 0.665 
3 DSR Newreno 6649000 6626 44289.53 10.0 0.666 

 

 

Figure 3.   DSDV results with Tahoe, NewReno, and SACK. 
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1 AODV Newreno 3764000 3739 25076.72 5.0 0.666 
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Table 4. Overall comparision

S.No Routing 
Protocol 

TCP 
Variant 

Transmitted 
Bytes 

Ack_Pack Throughput Lost 
Packet 

Throughput 
% 

1 DSR SACK 665000 6628 44322.88 6.0 6.66 
2 DSR Tahoe 6652000 6629 44269.51 16.0 0.665 
3 DSR Newreno 6649000 6626 44289.53 10.0 0.666 
4 DSDV SACK 5105000 5077 34002.67 8.0 0.666 
5 DSDV Tahoe 5079000 5052 33835.89 7.0 0.666 
6 DSDV Newreno 5079000 5052 33835.89 7.0 0.666 
7 AODV SACK 3764000 3739 25076.72 5.0 0.666 
8 AODV Tahoe 3764000 3739 25076.72 5.0 0.666 
9 AODV Newreno 3764000 3739 25076.72 5.0 0.666 

 
 

    

   

 

 

 

 

 

Figure 4.   AODV results with Tahoe, NewReno, and SACK. 
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8. Conclusion 

Several factors can affect the underlying TCP 
performance. Routing protocols are important for finding 
a route to the destination for information packet delivery. 
Routing protocols are designed in such away to find the 
route accurately and quickly. In Mobile Ad-hoc 
Networks, nodes are always mobile therefore route-
changing possibilities are dominant. Routing protocols are 
their best in finding the optimised route to make the 
communication possible. Is routing protocols working 
mechanisms have any effect on the underlying TCP 
performance? What is the effect of background traffic on 
TCP performance? 

This paper has presented a performance 
comparison of the DSDV, DSR and AODV routing 
protocols when combined with varying TCP algorithms 
along with background traffic. After briefly studying 
and discussion, it has been found that routing protocols 
have effects on the underlying TCP performance. In 
case of  260kbps background traffic no routing protocol 
produced more than 0.66% of throughput except DSR. 
DSR when evaluated with SACK TCP gave extremely 
good results almost ten folds more than the others i.e. 
6.66% throughput. AODV is consistent with all of the 
TCP algorithms tested. Similarly, AODV is found very 
slow in connection establishment as compared to 
DSDV and DSR and therefore very low amount of data 
is transmitted .i.e. the amount of transmitted bytes is 
less than DSR and DSDV. The same combination when 
was evaluated without background traffic. It was found 
that 16.26 % drop was observer in the total transmitted 
bytes. 

Thus none of the MANETs routing protocol is 
found of providing optimised performance with all of 
the TCP algorithms. A good routing protocol should be 
one having consistent and good performance with all of 
the TCP algorithms as different operating systems 
comes with implementation of different underlying 
TCP implementation. Anyway by comparison, it is 
found that DSR produces good performance with all of 
the TCP algorithms as compared to DSDV and AODV 
but AODV is consistent with all of the TCP algorithms. 
Thus it can be concluded that source initiated on-
demand routing protocols can produce good results 
with TCP algorithms, even in the case of background 
traffic, although further study of additional source 
initiated on-demand routing protocols is needed to 
validate this result. 
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