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1. Introduction 

Pinpoint landing technology is the most 
important technology for future space missions. To 
demonstrate this technology Moon is the suitable 
destination. Therefore, return to the moon become 
a demanding issue. A lot of scientists and engineers 
confirmed considerable interests in the past couple 
of decades [Cheng (1964), Cheng et al. (1966), 
McInnes (2003), Klumpp (1971), Ueno and Ya-
maguchi (1998), Sostaric (2006), Xing-Long et al. 
(2008) and Chao and Wei (2008)]. Safe landing 
capability is also essential, which can be achieved 
while a spacecraft land vertically and softly on the 
lunar surface[Kenji et al. (2002)]. Gravity-turn 
descent is one of the solutions for this purpose. 
This technique entails the lander thrust vector is 
oriented opposed to the velocity vector along 
complete flight path of the vehicle [McInnes 
(1999)]. Using inertial measurement unit, the 
information about the velocity vector can be 
identified to insert as an input of attitude controller 
that can maintain thrust vector parallel to the 
velocity vector instantaneously but in opposite 
direction. The great benefit of using gravity-turn 
descent is to have guaranteed upright landing, and 
fuel consumption is optimal [Cheng et al. (1966)]. 

The primary task of descent scheme is to 
solve the spacecraft 3-dimensional motion 
equations easily and efficiently, that will help to 
generate reference trajectory for lunar descent and 
landing. Conventional target trajectory generation 
schemes are numerically complex and cumbersome 
[Klumpp (1971), Klumpp (1974)]. The 2-
dimensional full numerical solution of spacecraft 
motion equation is indeed a time consuming issue 
and not suitable for on-board real-time trajectory 

generation algorithm to achieve precise and safe 
landing. Therefore it is necessary to find a 3-
Dimensional qualitative solution instead of 
numerical one. This paper proposed a 3-
dimensional advanced solution scheme for lunar 
descent equations to circumvent complexity. 

Solution of spacecraft motion equations in 
conventional gravity-turn descent is numerical and 
iterative in nature. This numerical method of 
solution limits the validity for real-time application 
because of complexity. Therefore, it is essential to 
solve the spacecraft motion equations analytically. 
Consequently some analytical solutions are 
available for a related problem [McInnes (1999)]. 
Suboptimal solutions are also discussed for Mars 
pin-point landing [Najson and Mease (2006), 
Topcu et al. (2007), Braun and Manning (2007), 
Lutz (2010), and Blackmore et al. (2010)]. It 
showed the comparisons between rigid body model 
and point mass of a Mars lander during powered 
descent phase. A convex optimization [Ackmese 
and Polen (2007)] has developed approximate 
solution to the powered descent guidance problem 
considering minimum-fuel constraint as a second 
order cone program (SOCP). Alternatively the 
same optimization problems can be solved in 
polynomial time using interior-point-method 
algorithms [Ye (1997), Sturm (1999) and Sturm 
(2002)]. In addition, the convex optimization is 
solved for real-time application in [Mattingley and 
Boyd (2010)]. More extensive comparisons of the 
convex optimization approach to alternative 
approach are available in [Steinfeld et al. (2010), 
Blackmore et al. (2010) and Acikmese and 
Blackmore (2011)]. However, nonlinear 
optimization is not guaranteed about the number of 
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required iterations to find a feasible trajectory and 
also not reliable to get the global optimum. 
Therefore, It is necessary to propose a purely 
analytical targeting solution to generate multi-
dimensional trajectories ”on-the-fly” or to re-target 
the spacecraft to another landing site altogether. At 
the end of last century, a purely 2-dimensional 
analytical solution is demonstrated for lunar 
landing mission[McInnes (1999)]. The similar 2-
dimensional concept is proposed in [Chomel and 
Bishop  (2009)] based on analytical solutions to the 
equations for downrange and altitude excluding 
cross range distance. 

Apart from the Apollo solution, other 
researchers have proposed solution scheme for 
lunar descent equations. But the motion equations 
for spacecraft descent are solved in conventional 
way consists some limitations too. Because, in 
conventional solution lunar surface is imagined a 
plane flat surface and centrifugal acceleration term 
is ignored [Kenji et al. (2002), McInnes (1999), and 
Ueno and Yamaguchi (1998)]. Ignoring centrifugal 
acceleration term during lunar descent it considers 
a constant and vertical gravitational acceleration as 
only other force acting on the descent vehicle 
[McInnes (1999)]. This confines the vehicle to be 
landed precisely on the lunar surface. Moreover, 
since centrifugal forces are unnoticed, the 
conventional method of solution limits the validity 
to regimes where the descent vehicle velocity is 
very small relative to the local orbital velocity and 
therefore, it is only be used to describe terminal 
descent, when the vehicle has braked from orbital 
velocity and close to the lunar surface. 
Consequently the authors demonstrate a three 
dimensional advanced method of descent solution 
for a spherical homogeneous lunar surface where 
the centrifugal forces are retained and descent can 
be initiated from its orbital speed condition. In this 
paper, some logical values are examined to 
determine a better approximation for centrifugal 
acceleration term without ignoring it, but the 
gravity is assumed to be constant in magnitude. 
These assumptions are reasonable while the 
descent starts from vehicle’s orbit. The proposed 3-
dimensional advanced solution over conventional 
descent method allows a full representation of 
descent module motion from orbiting condition 
down to final vertical landing situation. To 
represent the significant improvement in the new 
solutions, 3-dimensional representation is shown 
for both three steps in this study and these are full 
integrated solution, conventional solution and 
advanced solution. 

 
2. Scope of lunar guidance 

After Earth-Moon transfer, lunar landing 
spacecraft can descend directly to the surface from 
the hyperbolic orbit, or the vehicle can first enter 
into a parking orbit around the Moon before 

attempting to start descent. Both direct descent and 
parking orbit trajectories have their advantages and 
disadvantages. A direct descent trajectory requires 
fewer maneuvers and typically uses less fuel. One 
disadvantage, however, is that the Earth departure 
timing Fig. 2.  
 

 
Fig. 1. Typical lunar landing scenario from parking 
orbit conditions. 
 
 

 
 
Fig. 2. Reference descent trajectory to land on 
Moon. 
 
 

 
 
Fig. 3. Concept of trajectory space generation 
 

Reference descent trajectory to land on 
Moon becomes crucial. The departure must be 
timed so that the vehicle not only transfers to the 
Moon with high accuracy, but also is in the correct 
position relative to the landing site at arrival. 
During a direct descent, there is less time to make 
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adjustments to the orbit or assess how much 
navigational error has accumulated during the 
Earth-Moon transfer. On the other hand, the 
parking orbit trajectory expends extra fuel to enter 
the parking orbit, but can remain in this orbit until 
the time of final descent. This allows time to 
observe landing sites, make adjustments to the 
orbit, perform scientific experiments, etc. The 
motion of the vehicle can also be observed for a 
longer duration of time to assess navigational error 
accumulation. As shown in Fig. 1 a descent from a 
lunar parking orbit was selected due to safety, 
reliability, and flexibility for this approach. The 
lunar descent scheme takes a horizontally oriented 
spacecraft from orbital speeds at a point of 
hundreds of kilometers from the desired landing 
point to an almost vertical orientation and very low 
speed. Figure 2 shows reference descent trajectory 
to land on Moon. Before it starts the powered 
descent, the orientation of velocity vector remains 
parallel to the local horizontal vector, means that, 
at the initiation of powered descending phase, 
velocity vector pitch angle is 90[deg] with respect 
to the local vertical axis. With the help of proposed 
advanced descent scheme, that will be discussed in 
the following Chapters, this velocity vector pitch 
angle will be gradually reducing towards zero 
during powered descent phase of lunar landing 
spacecraft. Consequently, at the initiation of 
terminal descent, velocity vector pitch angle of the 
lunar landing vehicle will be almost zero to ensure 
vertical landing, which will confirm a successful, 
safe pin-point landing mission.  

The actual handover conditions from the 
orbital phase to the descent phase will be initiated 
close to the horizontal span and vertical range 
values of the desired landing site. Solution can be 
like that the final velocity vector pitch angle and 
reasonable thrust will be specified to generate a 
trajectory space. A desirable trajectory can then be 
selected from the options available. It does offer the 
best option for merging the handover conditions 
between the orbital phase termination and the 
descent-phase initiation in an acceptable manner. 
Depending on the trajectory design requirements, 
the trajectory space can be rather limited. 
Therefore, the initial and final velocity vector pitch 
angle, the initial and final speeds, and the gravity 
can also be varied to increase the trajectory space. 
This can be automated into an algorithm that 
computes a matrix of available trajectory spaces as 
shown in Fig. 3 and then selects the most desirable 
trajectory based on some user-defined criteria. 
Because this targeting algorithm is not iterative in 
nature, no risk of divergence exists in creating this 
trajectory space. However, the spacecraft may be at 
a distance that is too far from or too close to the 
targeted location for a safe landing, meaning that a 
desirable trajectory is not available. If the 
spacecraft is too far from the targeted landing site, 

the real-time guidance algorithm would wait. If the 
spacecraft is too close, the decision should be made 
to wait another orbit for the descent initiation, as 
shown in Fig. 4. 
 

   
Fig. 4. Trajectory adjustment and search for a 
precise landing path. 
 
 
3. 3 -Dimensional state equations 
 

 
 

Fig. 5. Schematic diagram of lunar descent 
 
 

A schematic diagram of lunar descent is 
described in Fig. 5. Local vertical and local 
horizontal (LVLH) reference frame is denoted by 
L. It also shows the relationship of the maneuver 
frame denoted by M to the LVLH unit vectors. 
Fundamental three dimensional equations of 
motion to describe the spacecraft proposition 
concerning a uniform sphere-shaped lunar body 
[Cheng (1964)] are divided into two parts. One is 
the equations of spacecraft motion for dynamic 
states as follow: 
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Where u is spacecraft velocity vector 
magnitude or spacecraft speed, gl is lunar 
gravitational acceleration, N is ratio of thrust F and 
vehicle mass m, α is pitch angle of the vehicle 
velocity vector relative to the local vertical, β is angle 
of thrust vector relative to reverse direction of 
spacecraft velocity, y is altitude of the spacecraft 
from lunar surface, yl is lunar radius, ψ is cross range 
angle, and φ is thrust roll angle. 
The remaining part to describe the fundamental 
equations of motion for kinematics states are 
 

 
where x and c are horizontal span and cross range 
distance respectively. 
 
3.1 Preliminary Postulation  

Right hand sides of the spacecraft governing 
equations are reduced to function of velocity vector 
pitch angle α. For this purpose some reasonable 
assumptions are made regarding thrust to mass ratio, 
thrust vector angle and lunar gravitational 
acceleration force. To generate an ideal descent 
trajectory it is rational to assume a constant value for 
N i.e., F/m and gl, and control input β is set to zero. 
But in the situation of constant thrust acceleration, m 
will not be constant and so F/m is varying. Yet, this 
error will be removed by the real time guidance 
algorithm. Therefore, using initial values for mass 
and gravity is a straightforward assumption for this 
solution. The changes are observed bellow: 
 

 
 

 
Therefore, ψ (t) is constant. Hear we can take some 
assumption at the face of reference trajectory 
generation.  

It is reasonable to assume that  y << yl in order that 
yl/y + yl ≈ 1. Then the equation for down range and 
cross range become 
 

 
 
 
4. 3 -dimensional inclusive numerical resolutions 

To find the full integrated numerical 
solutions for speed u, time t, downrange x, altitude y 
and cross range c as a function of velocity vector 
pitch angle α during power descend phase; authors 
have performed the following mathematical 
derivations for simplification. Therefore, the equation 
for speed is derived with the help of Eq. (7) and Eq. 
(8). 
 

 
or 

 
which  can be integrated as 
 

 
Therefore,  

 
 
where Lambert function W is expressed as 
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Now the inclusive numerical resolution for descent 
time, tD as a function of velocity vector pitch angle, α 
can be obtained by integrating the following equation 
developed by Eq. (8) and Eq. (12)  

 
Again for altitude and down range, it can be written 
that 

 
now substituting the values from equations (4) 

 
where u can be replaced from equation (13). For the 
solution of horizontal span as a function of velocity 
vector pitch angle α, the same procedure can be 
followed. 
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now from equation (10) 

 
and similar procedure is applied for the derivation of 
cross range 

 
 
 
5. 3 –D Conventional descent solution 

Analytical solution for lunar descent is 
obtained here by assuming the lunar surface as a 
plane surface so that the lunar radias yl → ∞ so that 
equation (7) now reduces to: 
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This reduced equation is used to obtain a single, 
distinguishable differential equation with α as the 
self-regulating variable. From the above we have: 
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Now Eq. (23) can be integrated to obtain the descent 
speed u as a function of velocity vector pitch angle α 
as [1,3]:  
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where, u0 and α0 are initial values for speed and 
velocity vector pitch angle respectively.  
Differentiating Eq. (24): 
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 Using the above value of the speed u, we can obtain 
the solution for time, altitude, down range and cross 
range. First, the descent time is given as: 
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Using equations (8) and (25) gives:  
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Similarly, the altitude is given as:  
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Using equations (4), (21) and (25) gives:  
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Using equations (10) and (21), the down range 
distance is given as: 
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Using equations (25) gives: 
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Similarly, using equations (11) and (21), the cross 
range distance is given as: 
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Using equations (25) gives:  
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5.1.  Descent constraints 
  Along with the assumptions described in 
Section 3.1, other required descent specifications are 
considered to integrate the developed equations and 
to compare the simulation results between numerical 
solution and analytical solution for lunar descent 
scheme. Specific descent speculations are shown in 
Table 1. 
 
 
Table 1.  Lunar descent specification 
Lunar descent specification  
Lunar gravitational acceleration (gl)  1.623 [m/s 2]  

Thrust to mass ratio (N )  4 [N/kg]  

Initial lander speed (u0)  1688 [m/s]  

Initial velocity vector pitch angle (α0)  90 [deg]  

Initial altitude for powered descent  100 [km]  
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Fig. 6. Comparison between numerical solution, convention analytical solution and proposed advanced analytical 
solution: Speed, time and altitude  
 

 
 

Fig. 7. Cross range response varying crossing angle from 0.0 degree to 25 degree. 
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6.  3-Dimensional advanced lunar descent solution 

To solve the same governing equations for 
the proposed 3-dimensional advanced scheme, it is 
again necessary that the right hand sides of the 
equations are kept as a function of velocity vector 
pitch angle α. New assumption of centrifugal 
acceleration term is considered for homogeneous 
spherical lunar surface. Assumptions for mass and 
lunar gravity are identical to the Section 3.1. But for 
centrifugal acceleration term, a constant value Γ can 
be logically chosen which is defined as the ratio 
between centrifugal acceleration and lunar 
gravitational acceleration. Though this is noticeably a 
varying value, during reference trajectory generation 
phase it is reasonable to consider as an assumption at 
the initial stage because the real-time guidance will 
compensate for the errors between the model and the 
environment. Therefore, 
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6.1 Mathematical Derivation  

With these assumptions and making consistent with 
the traditional lunar descent works, [Cheng (1964), 
McInnes (1999), and McInnes (2003)] speed can be 
recognized by following differential equations 
formulating as a function of velocity vector pitch 
angle α. 
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This equation can now be directly integrated to 
obtain the descent velocity u as a function of the 
velocity vector pitch angle α as 
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Now 

 
 Therefore,

 

 
where τ=1/(1-Γ) is a measure of the centrifugal 
acceleration term. Then, the solution for current 
speed obtains the shape: 
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Now the descent time tD, vertical range y(α) and 
horizontal span x(α) are resolved in an identical 
manner of the conventional gravity turn descent 
solution as follow 
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Now for altitude, 
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Fig. 8. Cross range response varying crossing angle from 0.0 degree to 05 degree 

 
Now for downrange, 

 
where 

 
and the cross range, 

 
where,  

 
It is evoked that the τ is the measure of the relation 
between centrifugal acceleration and lunar 
gravitational acceleration terms. With the purpose of 
integration for above equations in a qualitative 

manner the value for τ must be an integer. This 
entails τ = 1, 2, 3, 4 . . . . . Instead of this solution, 
directly the ratio Γ, which is mentioned earlier, can 
be chosen some fractional values to make τ an 
integer. But the authors found better results having 
directly the integer logical values to get  a qualitative 
integration of these equations. Choosing a

 

logical 
value directly for the τ proves more preciseness in 
approximation as well. The influences of differing the 
constant τ is demonstrated in previous work[Mehedi 
and Kubota (2011)]. Unlike values (1, 2, 3, 4, 5, ...) 
for τ are employed into equations (42), (44), (47), 
(50) and (53) and these equations are numerically 
integrated with

 
constant approximate values for gl 

and N whereas gl =1.623 m/sec
2 

and N = 5 N/kg. 
Initial and final values for the velocity vector pitch 

angle α is taken 90
0 
and 0

0 
while

 
the initial speed u0 is 

considered as approximate orbital speed, 1688 m/sec. 
In contrast of this advanced solution, full numerical 
integrated resolution to equations (1), (2), (4), (5) and 
(6), and traditional gravity-turn solutions to equations 
[Cheng (1964); McInnes (1999, 2003)] are performed 
for comparison taking same approximation for 
β,gl,N,α and u0 as it is made into equations (42), 
(44), (47), (50) and (53) while no estimation are 
made about the centrifugal acceleration. 
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Fig. 9. Cross range response varying crossing angle from 0.0 degree to 0.5 degree 
 
A comprehensive evaluation of this advanced 
solution with traditional gravity-turn solution, and a 
numerically integrated solution to the full equations 
of lunar module descent are exposed in this 
investigation. It can be noted that varying τ has 
reasonable impact on different responses for speed, 
time, vertical range and horizontal span for lunar 
descent scheme. The largest impact is observed on 
the final vertical range variation. The centrifugal 
acceleration effectively adjusts the rate of change of 
the vehicle velocity vector pitch angle which impacts 
the direction of the velocity vector. Therefore, the 
term τ directly influences the vertical range of the 
trajectory. From the assessment of the various values 
for τ, a value of τ = 2 emerges to be a realistic 
number and improves on different responses of 
advanced solutions for speed, time, vertical range and 
horizontal span over traditional solutions. 
7.  Simulation results 
It is observed in the previously derived equations that 
there is no effect of crossing angle, ψ on the 
equations for speeds, time and altitude. Therefore, 
different trajectory responses for descent speeds, time 
and altitude are shown in as shown in Figs. 6(a), 6(b), 
6(c) and 6(d). as a comparison between numerical, 

conventional and advanced analytical descent 
illumination given τ = 2 to the fully integrated 
solutions to equations (1), (2), (4) and (5) where β = 
0. The fully integrated solution assumes a constant 
lunar gravitational acceleration, gl, and constant 
thrust to mass ratio, N, but does not guess a constant 
centrifugal acceleration. The computer simulation 
results for full integrated solution is considered as an 
ideal measure of lunar descent trajectory. But the 
method is complex and iterative. It needs long time to 
execute and not suitable for real time application. 
However, the result of this ideal situation is a model 
to follow by any type of solution. It is pleasing if it 
would get responses with a miniature divergence 
between a new solution and ideal numerical solution 
and better performance than the conventional one. 
For this purpose and advanced analytical solution is 
proposed here and compared the responses. In the 
Figs. 6(a), 6(b), and 6(c), speed and time responses 
are almost similar between numerical, conventional 
and advanced analytical solution. Great impact is 
observed for altitude response in Fig. 6(d) which 
demonstrates the trajectory discrepancy and the 
guidance will be required to remove. 
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Fig. 10. Downrange response varying crossing angle from 0.0 degree to 25 degree 

 

 

Fig. 11. Downrange response varying crossing angle from 0.0 degree to 5 degree 
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Figures 7, 8, and 9 show simulation results 

for cross range responses of both numerical, 
conventional and advanced analytical solutions as a 
function of velocity vector pitch angle. Crossing 
angle is a major factor for variation of cross range 
distance. Authors varied the crossing angle 
intentionally to observe the effect on cross range 
distance during lunar descent. Lunar landing 
spacecraft does not travel towards cross range 
distance while the crossing angle is maintained zero 
degree. With the variation of crossing angle between 
zero degree to 25 degree, spacecraft travels more than 
150 km far towards cross range as shown in Fig. 7. If 
the crossing angle is maintained within 5 degree, 
spacecraft moves with in the range of 32.5 km. 
Deviation of cross range distance per degree is shown 
in Fig. 8.  
Crossing angle is an important factor for precise 
lunar landing mission. In previous approaches lunar 
descent trajectory is designed assuming that the 
crossing angle is zero. But the simulation results 
shown in Fig. 9 that, lunar landing spacecraft 
deviates more than 600 m from the line of down 
range while crossing angle is changed from zero to 
0.1 degree. For 0.5 degree of crossing angle 
spacecraft moves more than 3 km from the line of 
down range.  

Above analysis proves that the crossing angle plays a 

major role in trajectory design for precise lunar 
landing mission. Further, only the cross range 
distance is not affected with the change of crossing 
angle, it influences the down range range distance as 
well. Figs. 10 and 11 show the simulation results for 
down range response of both numerical, conventional 
and advanced solutions as a function of velocity 
vector pitch angle. With the increase of crossing 
angle, down range distance decrease. As a result, 
lunar landing spacecraft will travel shorter distance 
than the required. If the crossing angle increase up to 
25 degree, down range distance decreases more than 
30 km as shown in Fig. 10. The influence on down 
range due to the change of each degree crossing angle 
is shown in Fig. 11.  

It is already mentioned that the advanced solutions 
are presented to reduce the complexity of numerical 
solution and to overcome the limitations of 
conventional scheme. Cross range and down range 
responses of above simulation results prove that the 
deviation occurs between numerical conventional and 
advanced solution. These deviation will influence on 
precise lunar landing mission. Again, advanced 
solution of lunar descent motion equation is much 
more suitable for real-time application. Deviation of 
cross range and down range from ideal solution can 
be overcome using real-time guidance scheme during 
descent. 

 

Fig. 12. 3-dimensionalflightpathcomparisonbetweennumericalandanalyticalsolutionfordifferentcrossingangle 
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8.  3-Dimensional response 

Section 4, 5 and 6 described the detail 
mathematical modeling of 3-dimensional 
representation for numerical conventional and 
advanced descent solution of lunar landing mission. 
Based on that derivation, computer simulation is 
performed. Figure 12(a), 12(b), 12(c) and 12(d) 
represents a comparison of 3-dimensional trajectory 
responses for spacecraft descent on lunar surface 
while the governing equations are solved by complete 
integration method, conventional illumination and 
advanced solution scheme. Equations of different 
states are numerically integrated with the constant 
values for lunar gravitational acceleration gl, thrust to 
mass ratio N , initial vehicle speed u0 and initial 
velocity vector pitch angle α0 mentioned in Table 1. 
Simulation is categorized for different values of 
crossing angle between 5 degree to 20 degree with 
the increment of 5 degree. It is observed that, altitude 
is not affected at all, while crossing angle is 
changing. On the other hand, down range and cross 
range distances are influenced because of different 
values of crossing angle. Result shows that the 
trajectory response of less complex advanced 
solution is always following the response of ideal but 
complex numerical solution  
having better performance than the conventional 
method of solution. 
 
9.  Conclusion 

The conventional 2-dimensional lunar 
descent and landing problem has been advanced to 
allow an accurate representation of lunar descent 
from orbital condition. A comprehensive 3-
dimensional evaluation of advanced scheme, 
conventional illumination and numerical solution for 
lunar landing spacecraft is exposed in this 
investigation Finding a reasonable assumption for 
lunar surface and centrifugal acceleration, it 
significantly advanced the sphere of validity of the 
traditional gravity-turn solution from low velocity 
terminal descent to a complete descent from orbital 
situation. The accessibility of the descent velocities, 
time, vertical range and horizontal span as a function 
of the velocity vector pitch angle could be utilized to 
lessen the computational trouble on real-time lunar 
descent guidance scheme for future landing mission. 
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