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Abstract: In this paper, the numerical solution of Fractional Differential-Algebraic Equations (FDAEs) is 
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1. Introduction 

Fractional modeling in differential equations 
has gained considerable popularity and importance 
during the past three decades or more. Besides, 
Differential-Algebraic Equations (DAEs) have been 
successfully used to characterize for many physical 
and engineering topics such as polymer physics, fluid 
flow, electromagnetic theory, dynamics of 
earthquakes, rheology, viscoelastic materials, viscous 
damping and seismic analysis. Also differential-
algebraic equations with fractional order have been 
made in some mathematical models in recent times.  
As known, fractional differential-algebraic equations 
usually do not have exact solutions. Therefore, 
approximations and numerical techniques must be 
used for them and also the solution of these equations 
has been a subject for many researchers.[1-9]  

In this paper, we want to show the Haar 
wavelet method to solve the fractional order       
differential-algebraic equations. Firstly, we derive 
Haar wavelet operational matrix of the fractional 
order integration and then we use the Haar wavelet 
operational matrices of the fractional order 
integration to completely transform the fractional 
order systems into algebraic systems of equations. 
Finally, we solve this transformed complicated 
algebraic equations system by the software. 

A fractional differential-algebraic equation 
(FDAE) with the initial conditions is defined as the 
form below [10] 

 
  �∗

�� 
��(�) = ����, ��, ��, … ��,��

′ , ��
′ , … ��

′ � 

� = 1,2,3, … � − 1,    � ≥ 0  , 0 < �� ≤ 1 
�(�, ��, ��, … ��) = �   

               ��(0) = ��          � = 1,2,3, … , �   (1) 

2. Basic definitions 
There are several definitions of a fractional derivative 
of order � > 0 [11], for example. Riemann-Liouville, 
Caputo, Grünwald-Letnikov, and the generalized 
functions approach. The most common definitions 
are Riemann-Liouville and Caputo. We give some 
basic definitions and properties of fractional calculus 
theory which are used in this paper. 
Definition 2.1. A real function �(�), � > 0. is said to 
be in the space �� , � ∈ � if there exists a real number 

� > �  such that �(�) = �� ��(�),  where ��(�) ∈
�[0, ∞). Clearly, �� ⊂ ��  if  � < �. 

Definition 2.2. A function �(�), � < 0. is said to be 
in the space ��

� , � ∈ � ∪ {0} if  �(� ) ∈ ��  
Definition 2.3. The Riemann-Liouville fractional 
integral operator of order � ≥ 0 of a function, 
� ∈ �� , � ≥ −1, is defined as   

�� �(�) =
�

Γ(�)
∫ (� − �)�� ��(�)��

�

�
, � > 0, � > 0   

(2)                             
���(�) = �(�).                                 (3)     
 
The properties of the operator ��  can be found in  
[12, 13]. We make use of the followings. 
    For � ∈ �� ,   � ≥ −1,    �, � ≥ 0    and  � > −1: 

 
1. �� �� �(�) = ��� � �(�)                     (4)    
2. �� �� �(�) = �� �� �(�)                     (5)   

3. �� �� =
Γ(�� �)

Γ(� � �� �)
�� � �                      (6)   

  
The Riemann- Liouville fractional derivative has 

some disadvantages making a model for real-world 
subjects using fractional differential and fractional 
differential-algebraic equations. Therefore, we 
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sometimes use a modified fractional differential 
operator �∗

�  introduced by Caputo’s work on the 
theory of viscoelasticity [14]. 
Definition 2.4. The fractional derivative of �(�) by 
Caputo is defined as  
 

�∗
� �(�) = �� � � � � �(�) 

    =
�

Γ(� � � )
∫ (� − �)� � � � ��(� )(�)��

�

�
,        (7)    

 
for  � − 1 < � ≤ � , � ∈ � , � > 0,   � ∈ �� �

� . 
Also, we need here two basic properties. 
 
Lemma 2.1. If   � − 1 < � ≤ � ,    � ∈ �     and 
 � ∈ ��

� , � ≥ −1, then  

1. �∗
� �� �(�) = �(�)                                (8)   

2. �� �∗
� �(�) =

�(�) − ∑ �(�)(0� )
��

�!
,   � > 0� � �

�� � .     (9)   

 
3. Haar wavelet operational matrix of fractional 
order integration 
 
3.1 Haar Function 

The orthogonal basis {ℎ� (�)}  of Haar 
wavelets for the Hilbert space ��[0,1] consists of 
 

ℎ� (�) = ℎ�(2�� − �), 
� = 2� + �, �≥ 0,  0 ≤ � ≤ 2�   �, �, � ∈ �      (10) 

    
where 

ℎ�(�) = 1,     0 ≤ � < 1, 
 

ℎ�(�) = �
1,      0 ≤ � < 0.5,
−1,    0.5 ≤ � < 1.

�          (11) 

 
each Haar wavelet ℎ�  has the support 

(2� ��, 2� �(� + 1)), 
so that it is zero elsewhere in the interval [0, 1). As 
might be expected, as � increases, the Haar wavelets 
become more and more localized. That is, {ℎ� (�)}  
are like a local basis. 
 
Any function �(�) ∈ ��([0,1]) can be expanded in 
Haar series 
 

�(�) = � ��ℎ�(�)

∞

�� �

 

 � = 2� + �, �≥ 0, 0 ≤ � ≤ 2�      (12) 
 
 
where the Haar coefficients ��, � = 1,2, …, are written 
by  
 

�� = 2� ∫ �(�)ℎ�(�)��
�

�
                (13) 

 
 
which are determined such that the following integral 
square error � is minimized  
 

� = � ��(�) − � ��ℎ�(�)

� � �

�� �

�

�

��
�

�

, 

 � = 2� 
   �∈ {0}∪ �  

 (14) 
 

By using the orthogonal property of Haar wavelet 
 

� ℎ�(�)ℎ�(�)�� = �2� �,   � = �,
0,        � ≠ �.

�
�

�

 

 
The series in Eq. (13) has infinite number of terms. If 
�(�) is piecewise constant or may be approximated as 
piecewise constant, then the sum in Eq. (13) may be 
terminated after �  terms, that is [15] 
 

�(�) ≈ ∑ ��ℎ�(�)� � �
�� � � = ��

� �� (�) = ��(�)      (15) 
 
where � = 2� , the superscript �  indicates 

transposition, ��(�)  denotes the truncated sum. The 
Haar coefficient vector ��  and Haar function vector 
�� (�) are defined as 
 

�� ≜ [��, ��, … , �� � �]�         (16) 
 
 

�� (�) ≜ [ℎ�(�), ℎ�(�), … , ℎ� � �(�)]�          (17) 
 

 
Selecting the collocation points as following 
 

�� =
(��� �)

��
, � = 1,2, … , �                        (18) 

 
We defined the � − square Haar matrix Φ� × �  as: 
 

Φ� × � ≜ ��� �
1

2�
�   �� �

3

2�
�  ⋯  �� �

2� − 1

2�
�� 

(19) 
 
For example, when � = 8,  the Haar matrix is 
expressed as  
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Φ�× � =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 1 1 1 1 1
1 1 1 −1 −1 −1 −1 −1
1 1 −1 0 0 0 0 0
0 0 0 1 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 −1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

   

(20) 
Correspondingly, we have 
 

��� = ����
1

2�
�  ���

3

2�
�⋯ ���

2� − 1

2�
��= ��

� Φ� × �  

(21)   
Because the m-square Haar matrix Φ� × �  is an 
invertible matrix, the Haar coefficient vector ��

�  can 
be gotten by [15] 
  

��
� = ��� Φ� � � × �                            (22) 

 
3.2. Operational matrix of the fractional order 
integration 
 
The integration of the �� (�) defined in Eq. (17) can 
be approximated by Haar series with Haar coefficient 
matrix P [16]. 
 

∫ �� (�)�� ≈ P� × �
�

�
�� (�)              (23) 

 
where the m-square matrix P is called the Haar 
wavelet operational matrix of integration [16]. Our 
purpose is to derive the Haar wavelet operational 
matrix of the fractional order integration. For this 
purpose, we use the definition of Riemann–Liouville 
fractional order integration, as below [13] 
 

(�� �)(�) =
1

Γ(�)
� (1 − �)�� ��(�)�� =

�

�

1

Γ(�)
��� �

∗ �(�) 
(24)   

 
where � ∈ � is the order of the integration, Γ(�) is 
the Gamma function and �� � � ∗ �(�)  denotes the 
convolution product of ��� � and �(�). Now if �(�) is 
expanded in Haar functions, as shown in Eq. (15), the 
Riemann–Liouville fractional integration becomes 
 

(�� �)(�) =
1

Γ(�)
��� � ∗ �(�)

≈ ��
�

1

Γ(�)
 {��� � ∗ �� (�)} 

(25) 

Thus if ��� � ∗ �(�) can be integrated, then expanded 
in Haar functions, the Riemann Liouville fractional 
order integration is solved via the Haar functions. 
 
Also, we define a � −set of Block Pulse Functions 
(BPF) as: 
 

��(�) = �
1, 1 �⁄ ≤ � < (1 + � ) � ,⁄

0,   otherwise
�              (26) 

 
 
where � = 0,1,2, ⋯ , (� − 1), 
 
The functions ��(�) are disjoint and orthogonal. That 
is, 
 

��(�)��(�) = �
0,               � ≠ � 
��(�),        � = �

�                       (27) 

 

∫ ��(�)��(�)�� = �
0,               � ≠ � 
1 �⁄ ,        � = �

��

�
                  (28)  

 
As seen the Haar functions are piecewise constant, 
and so it can be expanded into an m-term block pulse 
functions (BPF) as 
 
                    �� (�) = �� × � �� (�)                          (29) 
 
where  �� (�) ≜
[��(�)   ��(�) ⋯   ��(�) ⋯ �� � �(�)]�(30)    
 
In Ref. [17], Kilicman and Al Zhour have given the 
Block Pulse operational matrix of the fractional order 
integration ��  as following 
 

(�� �� )(�) ≈ �� �� (�)                        (31) 
 
where 
 

�� =
�

� �

�

Γ(�� �)

⎣
⎢
⎢
⎢
⎢
⎡

1 �� �� ⋯ �� � �

0 1 �� ⋯ �� � �

0 0 1 ⋯ �� � �

0 0 0 ⋱ ⋮
0 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎤

            (32) 

 
With �� = (� + 1)� � � − 2�� � � + (� − 1)�� �    (33) 
 
Next, we derive the Haar wavelet operational matrix 
of the fractional order integration. 
Let 

     (�� �� )(�) ≈ �� × �
� H� (t)                  (34)    
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where the � − square matrix �� × �
�  is called the Haar 

wavelet operational matrix of the fractional order 
integration. Using Eqs. (29)(30) and (31), we get 

 
(�� �� )(�) ≈ (�� Φ� × � �� )(�) =
Φ� × � (�� �� )(�) ≈ Φ� × � �� �� (�)                    (35) 
 
From Eqs. (34) and (35) we get 
 

�� × �
� �� (�) = �� × �

� Φ� × � �� (�) = Φ� × � �� �� (�) 
(36) 

Then, the Haar wavelet operational matrix of the 
fractional order integration �� × �

�  is given by  
 

�� × �
� = Φ� × � �� Φ� × �

� �                 (37) 
 
For example, let � = 0.5,  � = 8, the operational 
matrix �� × �

�  is computed below [15] 
 

 
 

��× �
�.� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.7523 −0.2203 −0.1558 −0.0820 −0.1102 −0.0580 −0.0447 −0.0377
0.2203 0.3116 −0.1558 0.2296 −0.1102 −0.0580 0.1756 0.0782
0.0410 0.1148 0.2203 −0.0350 −0.1102 0.1623 −0.0389 −0.0063
0.0779 −0.0779 0 0.2203 0 0 −0.1102 0.1623
0.0094 0.0196 0.0812 −0.0032 0.1558 −0.0247 −0.0026 −0.0009
0.0112 0.0439 −0.0551 −0.0194 0 0.1558 −0.0247 −0.0026
0.0145 −0.0145 0 0.0812 0 0 0.1558 −0.0247
0.0275 −0.0275 0 −0.0551 0 0 0 0.1558 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

      

 
4. Numerical Applications 

Showing the efficiency of the method, we 
consider the following fractional differential-
algebraic equations. All the numerical results were 
obtained by using the software MAPLE. 
 
Example 4.1. We consider the following fractional -
algebraic equation. 

� � �(�) − ���(�) + �(�) − (1 + �)�(�) = 0    
0 < � ≤ 1 

�(�) − ���� = 0 
(38) 

 
with initial conditions �(0) = 1, �(0) = 0  and 
exact solutions �(�) = �� � + �����, �(�) = ����   
when � = 1 
Firstly, we add ��(�)  to both sides of the first 
equality for applicability. 
 

��(�) + � � �(�) − ���(�) + �(�) − (1 + �)�(�)
= −�� � + ����+ ����� 

 
�(�) − ���� = 0 

(39) 
Now, let 
 
��(�) = ���� (�)      and    ��(�) = � ��� (�)   (40) 
 
together with the initial states, then we have: 

 
� � �(�) = ���� × �

�� � �� (�)               (41) 
 

�(�) = ���� × �
� �� (�) + 1⏟

�(�)

           (42) 

�(�) = � ��� × �
� �� (�) + 0⏟

�(�)

           (43) 

 
Similarly, �(�) = −�� � + ����+ ����� may be 
expanded by the Haar functions as follows 

 
�(�) = ��

�� � (�),    �(�) = ��
� �� (�)      (44) 

 
Substituting Eqs. (40-41-42-43-44) into (39), we get  
 

���� (�) + ���� × �
�� � �� (�) − �� ��� (�)

+ ���� × �
� �� (�)

+  −(1 − �)� ��� × �
� �� (�)

= ��
��� (�) 

 
� ��� × �

� �� (�) = ��
� �� (�) 

(45) 
Hereby, Eq. (38) has been transformed into a system 
of algebraic equations. Substituting values of solving 
the system of algebraic equations, we can obtain the 
coefficients  ��

�  . Then using Eq. (42), we can get 
�(�). The numerical result for � = 16 is shown in 
Table 1 and Fig 1. The numerical solution is in 
perfect agreement with the exact solutions. 
 
Example 4.2. We consider the following fractional 
differential-algebraic equation. 
 

� � �(�) + �(�) − �(�) = −���� 
     �(�) + �(�) = �� � + ����            (46) 

         0 < � ≤ 1 
 
with initial conditions �(0) = 1, �(0) = 0 and exact 
solutions �(�) = �� �, �(�) = ����  when � = 1 
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Firstly, we add ��(�)  to both sides of the second 
equality for applicability as above. 
 

��(�) + � � �(�) + �(�) − �(�) = −����− �� � 
 

�(�) + �(�) = �� � + ���� 
(47) 

Now, let 
 
��(�) = � ��� (�)   and    ��(�) = ��� � (�)     (48) 
 
together with the initial states, then we have: 

 
� � �(�) = � ��� × �

�� � �� (�)                  (49) 
 

�(�) = � ��� × �
� �� (�) + 1⏟

�(�)

              (50) 

�(�) = ���� × �
� �� (�) + 0⏟

�(�)

              (51) 

 
Similarly, 

�(�) = �� � + ����                
and 

�(�) = −�� � − ���� 

 may be expanded by the Haar functions as follows 
 

�(�) = ��
� �� (�), �(�) = ��

� �� (�)         (52) 
 
Substituting Eqs. (48-49-50-51-52) into (47), we get  
 
 

� ��� (�) + � ��� × �
�� � �� (�) + � ��� × �

� �� (�) + 1
− ���� × �

� �� (�) = ��
� �� (�) 

 
� ��� × �

� �� (�) + 1 + ���� × �
� �� (�) = ��

� �� (�) 
 

(53) 
Hence, Eq. (46) has been transformed into an 
algebraic equations system. Solving this system, we 
can find the coefficients  ��

�  . Then using Eq. (50), 
we can get �(�). The numerical result for � = 16 is 
shown in Table 2 and Fig 2. The numerical solution 
is in perfect agreement with the exact solutions. 

Table 1 and Fig 1 shows the approximate 
solutions for Ex. (4.1) obtained for different values of 
�. The results are in good agreement with the results 
of the exact solutions.  

 
 
 
Table 1. Numerical results of the solution in Example 4.1 

m=16 � = �, � � = �, �� � = � 

� �(�) �(�) �(�) ������(�) 

0.0 1.00000000 1.00000000 1.00000000 1.00000000 

0.1 0.76419238 0.84829862 0.91482076 0.91482076 

0.2 0.75450963 0.81669721 0.85846462 0.85846462 

0.3 0.78941616 0.79789987 0.82947428 0.82947428 

0.4 0.85248504 0.82408711 0.82608738 0.82608739 

0.5 0.93142468 0.87591437 0.84624343 0.84624343 

0.6 1.02320417 0.94545816 0.88759712 0.88759712 

0.7 1.12579058 1.02917465 0.94753769 0.94753768 

0.8 1.22732910 1.03284936 1.02321384 1.02321384 

0.9 1.33439358 1.22342656 1.11156389 1.11156388 

1.0 1.43375428 1.32697591 1.20935045 1.20935043 
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Table 2. Numerical results of the solution in Example 4.2 

m=16 � = �, � � = �, �� � = � 

� �(�) �(�) �(�) ������(�) 

0.0 1.00000000 1.00000000 1.00000000 1.00000000 

0.1 0.76089102 0.83739314 0.90483742 0.904837418 

0.2 0.69092618 0.74943905 0.81873076 0.818730753 

0.3 0.63965018 0.68161287 0.74081822 0.740818220 

0.4 0.59708775 0.62503222 0.67032005 0.670320046 

0.5 0.55999258 0.57601215 0.60653066 0.606530659 

0.6 0.52688937 0.53262381 0.54881164 0.548811636 

0.7 0.49696399 0.49371279 0.49658531 0.496585303 

0.8 0.46970219 0.45851974 0.44932896 0.449328964 

0.9 0.44474478 0.42650758 0.40656966 0.406569659 

1.0 0.42182073 0.39727361 0.36787944 0.367879441 

 
 

 
Fig 1.  Graph of the numerical results for Example 
4.1 
 
 
 
 

Table 2 and Fig 2 shows the approximate 
solutions for Ex. (4.2) obtained for different values 
of  � . The results are in good agreement with the 
results of the exact solutions. 
 
 
 
 
 

 

 
Fig 2. Graph of the numerical results for Example 
4.2 
 
5. Conclusion 

In this paper, the Haar wavelet method has 
been extended to solve fractional differential-
algebraic equations (FDAEs). The results of the 
method are in good agreement with obtained by exact 
solutions. The study show that the method is reliable 
techniques to handle fractional differential–algebraic 
equations, and the method offer significant 
advantages in terms of straightforward applicability, 
computational effectiveness, and accuracy  
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