Path Analysis of Harvest Regulation with Selective Cutting

Liu Gang¹, Xu Shendong²*, Yang Shanglai², Feng Jinghua²

¹The College of Horticulture and Forestry Science, Central China Agricultural University, Wuhan, China ²Administration of the Dalaoling National Reserve in the Three Gorges, Yichang, China Correspondence author: Email: 296107883@gq.com

Abstract: The forest harvest regulation with selective cutting is one kind of forestry optimization model. Firstly, decision variable and matrix of restrain condition were established. Secondly, Cutting area and remaining area were calculated for Taizhishan Forest Farm Administration Bureau in Hubei Province. Finely, selective cutting path were analysed for 6 periods.

[Liu Gang, Xu Shendong , Yang Shanglai, Feng Jinghua. Path Analysis of Harvest Regulation with Selective Cutting. World Rural Observ 2017;9(4):54-57]. ISSN: 1944-6543 (Print); ISSN: 1944-6551 (Online). http://www.sciencepub.net/rural. 9. doi:10.7537/marswro090417.09.

Key words: Path analysis; Harvest regulation; Selective rutting

1 Decision variable and matrix of restrain	selective cutting
condition	Decision variable of harvest adjust with
1.1 Decision variable of harvest adjust with	selective cutting is shown in table 1.

Table 1 Decision variable of harvest adjust with selective cutting

Under selective cutti	ng intensity =0.3 dropping ag	e class caused Period	l 1 pe	riod 2	period 3	3 period	period
by selective cutting		period	4			5	6
1	1	X1	X9	X17	X25	X33	X41
2	1	X2	X10	X18	X26	X34	X42
3	2	X3	X11	X19	X27	X35	X43
4	3	X4	X12	X20	X28	X36	X44
5	4	X5	X13	X21	X29	X37	X45
6	4	X6	X14	X22	X30	X38	X46
7	5	X7	X15	X23	X31	X39	X47
8	6	X8	X16	X24	X32	X40	X48

1.2 Matrix of restrain condition reserved by selective cutting

Matrix of restrain condition reserved by selective cutting is shown in table 2.

		Table	2 Matrix of	restrain conditio	on reserved by selective	e cutting	
Reserved area	Restrain of eriod 1	Restrain of period 2	Restrain of period 3	Restrain of period 4	Restrain of period 5	Restrain of period 5	Goal area
al	+X1+X2	+X9+X10	+X17+X18	+X25+X26	+X33+X34	+X41+X42	b1
a2	al-Xl+X3	+X1+X2-X9+X11	+X9+X10-X17+X19	+X17+X18-X25+X27	+X25+X26-X33+X35	+X33+X34-X41+X43	b2
a3	a2-X2+X4	al-X1+X3-X10 +X12	+X1+X2-X9+X11 -X18+X20	+X9+X10-X17+X19-X26+ X28	+X17+X18-X25+X27 -X34+X36	+X25+X26-X33+X35 -X42+X44	b3
a4	a3-X3+X5+X6	a2-X2+X4-X11 +X13+X14	a1-X1+X3-X10+X1 2-X19+X21+X22	+X1+X2-X9+X11-X18+X2 0-X27+X29+X30	+X9+X10-X17+X19-X26+X28-X35+X3 7+X38	+X17+X18-X25+X27 -X34+X36-X43+X45 +X46	b4
a5	a4-X4+X7	a3-X3+X5+X6- X12+X15	a2-X2+X4-X11+X1 3 +X14-X20+X23	a1-X1+X3-X10+X12-X19+ X21+X22-X28+X31	+X1+X2-X9+X11-X18+X20-X27+X29+ X30-X36+X39	+X9+X10-X17+X19-X26+X28-X35+X37+X3 8-X44+X47	b5
a6	a5-X5+X8	a4-X4+X7-X13 +X16	a3-X3+X5+X6-X12 +X15-X21+X24	a2-X2+X4-X11+X13+X14- X20+X23-X29+X32	a1-X1+X3-X10+X12-X19+X21+X22-X2 8+X31 -X37+X40	+X1+X2-X9+X11-X18+X20-X27+X29+X30- X36+X39 -X45+X48	b6
a7	a6-X6	a5-X5+X8-X14	a4-X4+X7-X13+X1 6-X22	a3-X3+X5+X6-X12+X15- X21+X24-X30	a2-X2+X4-X11+X13+X14-X20+X23-X2 9+X32 -X38	a1-X1+X3-X10+X12-X19+X21+X22-X28+X3 1-X37+X40-X46	b7
a8	a7-X7+a8 -X8	a6-X6-X15+a7-X7+a8 -X8-X16	a5-X5-X14-X23+a6- X6-X15+a7-X7+a8- X16-X24	a4-X4-X13-X22-X31+a5-X 5-X14-X23+a6-X6-X15+a7 +a8-X24-X32	a3-X3-X12-X21-X30-X39+a4-X4-X13- X22-X31+a5-X14-X23+a6+a7+a8-X32- X40	a2-X2+X4-X11-X20-X29-X38-X47+a3-X3-X 12-X21-X30-X39+a4-X4-X22-X31+a5+a6+a7 +a8-X40-X48	b8

Table	2 Matrix	of restrain	condition	reserved	by selectiv	e cutting

Goal function value= 31514

2 Cutting area and remaining area

2.1 Optimal cutting area of different periods

Optimal cutting area of different periods is shown in table 3.

Age class	Period 1	Period 2	Period 3	Period 4	Period 5	Period 6
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	56.1
4	0	0	0	0	56.1	110.0
5	10.0	181	57.0	289.3	298.1	144.1
6	0	0	0	0	0	0
7	3.0	0	0	0	0	0
8	20.0	0	3.0	20.0	0	123.0
Total cutting	33	181	60	309.3	354.2	433.2

Table 3 Optimal cutting area of different periods

Total cutting area of all periods= 1370.

2.2 Remaining area at end of different periods

Remaining area at end of different periods is

Table 4 Remaining area at end of different periods							
Period 0	Period 1	Period 2	Period 3	Period 4	Period 5	Pe	
467.0	0	0	0	0	0	0	

shown in table 4.

Age class	Period 0	Period 1	Period 2	Period 3	Period 4	Period 5	Period 6(goal)
1	467.0	0	0	0	0	0	0
2	361.0	467.0	0	0	0	0	56.1
3	167.0	361.0	467.0	0	0	56.1	110.0
4	178.0	177.0	542.0	524.0	289.3	298.1	144.1
5	10.0	181.0	177.0	542.0	524.0	233.2	188.1
6	3.0	20.0	0	123.0	272.7	225.9	212.1
7	3.0	3.0	20.0	0	123.0	272.7	225.9
8	20.0	0	3.0	20.0	0	123.0	272.7
Total	1209.0	1209.0	1209.0	1209.0	1209.0	1209.0	1209.0

3 Path analyses

3.1 Selective cutting path at period 1

Selective cutting path at period 1 is shown in table 5. a5 is completely selective cutting, X5=10, therefore X5 drops completely to age class 4; a7 is completely selective cutting, X7=3, therefore X7 drops completely to age class 5; a8 is completely selective cutting, X8=20, therefore X8 drops completely to age class 6; Attention: The total area is invariable.

Table 5 Selective cutting path of first peri
--

Age class	Remaining area at period 0	Decision variable 1	Restrain condition	Area at period 1
1	a1=467	X1	+X1+X2	0
2	a2=361	X2	a1-X1+X3	467.0
3	a3=167	X3	a2-X2+X4	361.0
4	a4=178	X4	a3-X3+X5+X6	167+10=177.0
5	a5=10	X5=10	a4-X4+X7	178+3=181.0
6	a6=3	X6	a5-X5+X8	10-10+20=20.0
7	a7=3	X7=3	a6-X6	3.0
8	a8=20	X8=20	a7-X7+a8-X8	3-3+20-20=0

3.2 Selective cutting path at period 2

Selective cutting path at period 2 is shown in table 6. Age class 5 is completely selective cutting, X13=181, therefore X13 drops completely to age class 4.

	1 au	te 6 Selective cutting f	oute of second period	
Age class	Remaining area at period 1	Decision variable 2	Accumulated	Area at
	Remaining area at period 1	Decision variable 2	restrain condition	period 2
1	0	X9	+X9+X10	0
2	467.0	X10	+X1+X2-X9+X11	0
3	361.0	X11	a1-X1+X3-X10+X12	467.0
4	177.0	X12	a2-X2+X4-X11+X13+X14	361+181=542.0
5	181.0	X13=181	a3-X3+X5+X6-X12+X15	177.0
6	20.0	X14	a4-X4+X7-X13+X16	0
7	3.0	X15	a5-X5+X8-X14	20.0
8	0	X16	a6-X6-X15+a7-X7+a8-X8-X16	3.0

Table 6 Selective cutting route of second period

3.3 Selective cutting path at period 3

Selective cutting path at period 3 is shown in table 7. Age class 5 is partly selective cutting, X21=57, therefore X21 drops completely to age class

4, (177-57) increases to age class 6; Age class 8 is completely selective cutting, X24=3, therefore X24 drops completely to age class 6.

Table 7 Selective cutting path of third period							
Age	Remaining area at	Decision	Accumulated	Area at			
class	period 2	variable 3	restrain condition	period 3			
1	0	X17	+X17+X18	0			
2	0	X18	+X9+X10-X17+X19	0			
3	467.0	X19	+X1+X2-X9+X11-X18+X20	0			
4	542.0	X20	a1-X1+X3-X10+X12-X19+X21+X22	467+57=524.0			
5	177.0	X21=57	a2-X2+X4-X11+X13+X14-X20+X23	542.0			
6	0	X22	a3-X3+X5+X6-X12+X15-X21+X24	(177-57)+3=123.0			
7	20.0	X23	a4-X4+X7-X13+X16-X22	0			
8	3.0	X24=3	a5-X5-X14-X23+a6-X6-X15+a7-X7+a8-X16-X24	20.0			

3.4 Selective cutting path at period 4

Selective cutting path at period 4 is shown in table 8. Age class 5 is partly selective cutting, X29=289.3, therefore X29 drops completely to age

class 4, (542-289.3=252.7) increases to age class 6; Age class 8 is completely selective cutting, X32=20, therefore X32 drops completely to age class 6.

Table 8	Selective	cutting	path	of fourth	period

Age	Remaining area at period	Decision	variable	Accumulated	restrain	condition Area at	
class	3	4		(omit)		period 4	
1	0	X25				0	
2	0	X26				0	
3	0	X27				0	
4	524.0	X28				289.3=289.3	
5	542.0	X29=289.	.3			524.0	
6	123.0	X30				542-289.3+20=272	2.7
7	0	X31				123.0	
8	20.0	X32=20				0	

3.5 Selective cutting path at period 5

Selective cutting path at period 5 is shown in table 9. Age class 4 is partly selective cutting, X56.1=289.3, therefore X36 drops completely to age

class 3, (289.3-56.1=233.2) increases to age class 5; Age class 5 is partly selective cutting, X37=298.1, therefore X37 drops to age class 4, (524-298.1=225.9) increases to age class 6.

Table 9 Selective cutting path of fifth period								
Age class	Remaining area at period 4	Decision variable 5 Accumulated restrain condition (omit)	Area at period 5					
1	0	X33	0					
2	0	X34	0					
3	0	X35	0+56.1=56.1					
4	289.3	X36=56.1	298.1					
5	524.0	X37=298.1	0+233.2=233.2					
6	272.7	X38	0+225.9=225.9					
7	123.0	X39	272.7					
8	0	X40	123.0					

3.6 Selective cutting path at period 6

Selective cutting path at period 6 is shown in table 10. Age class 3 is completely selective cutting;

Age class 4 is partly selective cutting; Age class 5 is partly selective cutting; Age class 8 is completely selective cutting.

Age class	Remaining area at period 5	Decision variable 6	Accumulated restrain condition (omit)	Area at period 6				
1	0	X41		0				
2	0	X42		0+56.1=56.1				
3	56.1	X43=56.1		0+110=110.0				
4	298.1	X44=110		0+144.1=144.1				
5	233.2	X45=144.1		298-110=188.1				
6	225.9	X46		(233.2-144.1)+123=212.1				
7	272.7	X47		225.9				
8	123.0	X48=123		272.7				

Table 10 Selective cutting path of sixth period

By above analysis of 6 periods, it has completely promulgated path of Harvest Regulation with Selective Cutting. It has proven the accuracy and completeness of optimized method accuracy and completeness.

Reference

- Zhao Lili, Li Changsheng. Harvest regulation based on sustainable management of forest resource [J]. World Rural Observations, 2011, 3(1):92-96.
- 2. Gong P. Determining the Optimal Planting Density and Land Expectation Value-A Numerical Evaluation of Decision Model[J].

Forest Science, 1998, 44(3):356-364.

- Haight R, Monserud R. Optimizing any-aged management of mixed-species stands: II. Effects of decision criteria[J]. Forest Science, 1990, 36(1):125-144.
- 4. Haight R. Optimal management of loblolly pine plantations with stochastic price trends[J]. Canadian Journal of Forest Research (Print), 1993, 23(1):41-48.
- 5. Hyytiainen K, Tahvonen O, Valsta L. Optimum Juvenile Density,Harvesting,and Stand Structure in Even-Aged Scots Pine Stands[J]. Forest Science, 2005, 51(2):120-133.

12/13/2017