
             Researcher 2025;17(3)                                                 http://www.sciencepub.net/researcher     RSJ 

  

http://www.sciencepub.net/researcher                                                         researcher135@gmail.com 

 

  

11 

Study on the Modeling Software Reliability Growth from the Perspective of Imperfect Debugging 

 
1Dr. Gulshan Kumar and 2Dr. Vivek Kumar 

 
1Assistant Professor in Computer Science, Rawal Institutions,Sohna Road, Near Zakopur, Faridabad, 

Haryana (India) 
2Assosiate Professor in Computer Science, Saharanpur Institute of Advance Studies, Saharanpur Uttar 

Pradesh (India) 

 Email- 1Gulshan_dixit@rediffmail.com; viveks865@gmail.com 

 

Abstract: In today’s fast moving life, almost everything is dependent on software systems. Software systems 

are developed with the intent to automate various real life functions of the most intelligent creature of the 

universe, the mankind. This dependence has increased the scope and importance of having highly reliable 

software in no time. The persistent and diligent research in the development of software systems has led to the 

innovation of some fabulous software products that has brought the mankind closer in order to share the 

experiences across a global platform. Multipurpose satellites, space shuttles etc. have been launched so as to 

forecast the things that are happening in the universe. Attempts are being made to explore places other than 

the planet earth for existence of life. However, to conquer such missions, highly advanced technology with 

high precision is required. Huge development costs are incurred by real-time and mission critical systems. On 

the other hand, high level of risk to human life is posed by safety critical systems. Thus, there should be no 

room for errors in the development of such systems. 

[Kumar, G. and Kumar, V. Study on the Modeling Software Reliability Growth from the Perspective of 

Imperfect Debugging. Researcher 2025;17(3):11-16]. ISSN 1553-9865 (print); ISSN 2163-8950 (online). 

http://www.sciencepub.net/researcher. 03. doi:10.7537/marsrsj170325.03 
 

Keywords: Modeling Software Reliability; Imperfect Debugging 

 

Introduction  

Even though the software system is created by 

the most intelligent creature of the universe, it 

is never failure free. The failures occur because 

of the faults that are manifested in them during 

their development by the software developers. 

The software testing team puts their best effort 

so as to remove the faults that are present in the 

software. However, the testing cannot be 

performed for long because of the stringent 

budget and schedule of the project management. 

On one hand, the project management wants all 

the faults that are residing in the software to be 

removed by the testing team so as to increase its 

reliability. On the other hand, the project 

management does not want to continue testing 

for long and increase the testing costs. Thus, 

scheduled delivery, cost and reliability are the 

main attributes for every software being 

developed. The main aim of the project 

management is to attain these attributes at their 

best possible values so as to achieve a good 

image in the market for long-term profits and 

survival.  

In today’s fast moving life, almost everything is 

dependent on software systems. Software 

systems are developed with the intent to 

automate various real life functions of the most 

intelligent creature of the universe, the mankind. 

This dependence has increased the scope and 

importance of having highly reliable software in 

no time. The persistent and diligent research in 

the development of software systems has led to 

the innovation of some fabulous software 

products that has brought the mankind closer in 

order to share the experiences across a global 

platform. Multipurpose satellites, space shuttles 

etc. have been launched so as to forecast the 

things that are happening in the universe. 

Attempts are being made to explore places other 

than the planet earth for existence of life. 

However, to conquer such missions, highly 

advanced technology with high precision is 

required. Huge development costs are incurred 

by real-time and mission critical systems. On 

the other hand, high level of risk to human life 

is posed by safety critical systems. Thus, there 

should be no room for errors in the development 

of such systems. Even though the software 

system is created by the most intelligent 

creature of the universe, it is never failure free. 

The failures occur because of the faults that are 

manifested in them during their development by 

the software developers. The software testing 

team puts their best effort so as to remove the 

faults that are present in the software. However, 

the testing cannot be performed for long 

because of the stringent budget and schedule of 

the project management. On one hand, the 

project management wants all the faults that are 

residing in the software to be removed by the 

testing team so as to increase its reliability. On 

http://www.sciencepub.net/researcher
http://www.sciencepub.net/researcher
mailto:researcher135@gmail.com
mailto:1Gulshan_dixit@rediffmail.com
mailto:viveks865@gmail.com
http://www.sciencepub.net/researcher
http://www.dx.doi.org/10.7537/marsrsj170325.03


             Researcher 2025;17(3)                                                 http://www.sciencepub.net/researcher     RSJ 

  

http://www.sciencepub.net/researcher                                                         researcher135@gmail.com 

 

  

12 

the other hand, the project management does 

not want to continue testing for long and 

increase the testing costs. Thus, scheduled 

delivery, cost and reliability are the main 

attributes for every software being developed. 

The main aim of the project management is to 

attain these attributes at their best possible 

values so as to achieve a good image in the 

market for long-term profits and survival. 

Literature Review 

 

The main aim of the testing process in the 

software development life cycle is to uncover 

all the faults that are lying dormant in the 

software. Software testing is defined as the 

process of executing a software system in its 

intended environment in order to determine 

whether or not the software matches its 

requirement specification. Dijiskstra (1972), 

states that software testing is an effective way 

to show the presence of underlying bugs in the 

software and is not meant to show their absence. 

Whenever a failure takes place, the fault that is 

responsible for it is immediately repaired. The 

process of observing failure and removing the 

corresponding fault indicates that there is an 

improvement in the reliability of the system. 

Software reliability being one of the most 

dynamic characteristic of software quality is 

preferred by both the users of the software as 

well as the developers of the software. 

There are four types of testing methods viz. 

performance testing, defect testing, security 

testing, and statistical testing. Statistical testing 

is different from other methods of testing in the 

sense that statistical testing is used to measure 

the reliability of the software rather than 

uncovering the faults. It is considered to be the 

most effective sampling method for evaluating 

the reliability of the system and is also known 

as reliability testing. There are four stages in 

assessing the reliability of the software.  

 

Reliability assessment provides both the users 

and the developers a quantitative measure of the 

leftover faults, decisions regarding the software 

release time, software maintenance in the 

operational phase etc. For users, reliability 

assessment provides a confidence measure in 

the quality of the software as well as their 

acceptability level. 

Model proposed by Musa (1975) and the model 

developed by Musa and Okumoto (1984), also 

known as 

Logarithmic Poisson execution time model are 

the two most known models that lie in the 

category of execution time models. These 

models differ on the basis of underlying 

assumptions on which they are built. 

Most of the SRGMs proposed so far, are based 

on calendar time, as this time component is 

more meaningful to the software developers, 

engineers and to the users of the software. A 

vast literature is available on calendar time 

models. In the year 1979, a pioneering attempt 

was done by Goel and Okumoto’s model. The 

models that were proposed later aimed to 

incorporate various different aspects of T&D 

environment with the relaxation on some 

assumptions. Goel and Okumoto’s (1979) 

model was exponential in nature. 

Earlier, in NHPP modelling it was assumed that 

the failure process could be described by 

exponential models due to the uniform 

operational profiles. However, most of the 

testing profiles lack uniformity and thus the 

assumption of uniformity is not real. The testing 

profiles are thus non-uniform because of 

various different reasons. 

Many researchers proposed models exhibiting 

S-shaped failure curve in order to model non-

uniform testing profile. The S-shaped curve 

proved to be quite successful in describing the 

non-uniformity of the operational profile. A 

number of S-shaped SRGMs have been 

developed by many researchers. 

Yamada et al. (1983) was the first to modify the 

GO model. They described testing as a two 

stage process, the fault-detection process and 

the fault correction process. Thus, the model 

proposed by Yamada et al. (1983) is known as 

Delayed S-shaped model. SRGMs proposed by 

Ohba (1984), Bittanti et al. (1988) and Kapur 

and Garg (1992) are also S- shaped in nature. 

However, these SRGMs have same 

mathematical form but they vary on the basis of 

assumptions on which they are built. 

Software has become one of the most 

significant components in day-to-day activity as 

the world is speedily moving toward 

technological age. Software firms put forth a lot 

of effort in order to develop free of faults 

http://www.sciencepub.net/researcher
http://www.sciencepub.net/researcher
mailto:researcher135@gmail.com


             Researcher 2025;17(3)                                                 http://www.sciencepub.net/researcher     RSJ 

  

http://www.sciencepub.net/researcher                                                         researcher135@gmail.com 

 

  

13 

software, thereby increasing the reliability of 

the software. Reliability modeling is done by 

software reliability growth models (SRGMs), 

which are software formulations used to 

evaluate and predict reliability.48 The 

modeling was started by researchers for single-

release framework, and with time, it has been 

succeeded by multiple releases because of the 

demand for same. In the present scenario, 

software that has been incorporated with all the 

characteristics and is reliable but is formulated 

long back may turn out to be technologically 

disused. As a result, it is required to create 

software in more than one release/multi-

releases where the new release may be the 

modification in existing feature with the aim to 

improve its reliability or addition in the 

functionality of software, etc.1, 2 It is not 

possible to detect all the faults in one cycle of 

software development as time and resources are 

accessible in a limited way. So, the remaining 

faults are rectified in the succeeding release, 

which can lead to imperfect debugging or error 

generation.1 Most of models assume that the 

rate of fault detection and/or removal stays the 

same throughout the testing. 

Depending on the values of the unknown 

parameters in the model, S-shaped models 

exhibit an important characteristic of describing 

both exponential and S-shaped growth curves. 

Hence are termed as flexible models. This 

flexibility makes S-shaped SRGMs more 

appropriate for real testing environments. 

 

 Types of imperfect Debugging 

In an imperfect debugging environment, 

Software Reliability Growth Models can be 

either purely imperfect, pure fault generation 

models while some others may integrate both 

the types of imperfect debugging. Goel (1985) 

first introduced the concept of imperfect 

debugging. He implemented it on Jelinski and 

Moranda model (1972). In these type of SRGMs, 

it was assumed that the removal rate of faults 

per remaining faults tends to decrease because 

of imperfect debugging. This is the first type of 

imperfect debugging phenomenon. The second 

type of imperfect debugging phenomenon is 

related to the error generation. In this, the fault 

content by time infinity increases and is usually 

more than the initial fault content. The error 

generation phenomenon was described by Ohba 

and Chou (1989) in modelling SRGMs. 

It is worth mentioning that during the early 

stages of research in reliability modelling, no 

distinction was made between the two types of 

imperfect debugging and even the models 

incorporating only one type of imperfect 

debugging phenomenon were simply named as 

imperfect debugging models. Thus, earlier a 

proper insight regarding this topic was not 

provided (Xie, 2003). The two types of 

imperfect debugging were first introduced by 

Zhang et al. (2003). The number of failures 

experienced/removal attempts were used in 

their modelling. A fault is generated only when 

some fault is being removed. Thus, the rate of 

generation of new faults is proportional to the 

rate of original fault removals. It should be 

noted that the number of failures that are 

experienced is not same as the number of fault 

removals. The facts related to imperfect 

debugging phenomenon were clearly illustrated 

by Kapur et al. (2006) in their model where they 

integrated both the types of imperfect 

debugging. 

Another significant factor that plays a crucial 

role in evaluating the reliability of the software 

is testing effort. Testing effort is defined as 

the amount of the resources or effort that are 

utilized during the fault detection/correction 

process in a software system. Testing effort is 

said to be directly proportional to the reliability 

achieved. Thus, software is said to obtain 

higher reliability if more resources are 

consumed during the testing process. However, 

due to the budget constraints, it is important to 

strike-off a balance between the resources 

utilized and the reliability obtained. 

Numerous SRGMs have been proposed by 

many researchers that have incorporated the 

concept of testing effort (Ahmad et al., 2010a; 

Quadri et al., 2011; Kapur et al., 2012). Further, 

a unified model was proposed by Zhang et al. 

(2014) with testing effort under the imperfect 

debugging assumption. A SRGM was proposed 

by Li et al. (2015) in which the debugging 

environment was taken to be imperfect with S-

shaped TEF being incorporated in the model. 

Many times it is assumed that during the entire 

testing period, the parameters of the SRGM 

remain smooth. However, it is not always the 

case. For instance, after analysing the failure 

datasets after some days of testing, the 

management decides that there is a need of 

some additional skilled member to join the 

testing team and some changes are also brought 

in the strategy that was previously adopted for 

testing and even some advanced tools and 

techniques are employed for the testing process. 

These attempts are made in order to speed up 

the testing process. So, the parameters of the 

model before the changes were made will not be 

able to describe the testing process as some 

model parameters may undergo change. The 

kinks/jumps that are thus observed in the fault 

http://www.sciencepub.net/researcher
http://www.sciencepub.net/researcher
mailto:researcher135@gmail.com
https://onlinelibrary.wiley.com/doi/full/10.1002/qre.2516#qre2516-bib-0048
https://onlinelibrary.wiley.com/doi/full/10.1002/qre.2516#qre2516-bib-0001
https://onlinelibrary.wiley.com/doi/full/10.1002/qre.2516#qre2516-bib-0002
https://onlinelibrary.wiley.com/doi/full/10.1002/qre.2516#qre2516-bib-0001


             Researcher 2025;17(3)                                                 http://www.sciencepub.net/researcher     RSJ 

  

http://www.sciencepub.net/researcher                                                         researcher135@gmail.com 

 

  

14 

detection rate is termed as the change point. In 

the literature of regression, the term two- phase 

regression or multiple-phase regression is also 

used for change-point models. In addition to 

this, broken-line regression, switching 

regression, two-stage least squares or 

segmented regression is also used (Kapur et al., 

2011a). 

For hardware and software reliability, change 

point models play a very significant role. In 

software reliability modelling, it was 

assumed by most researchers that the fault 

detection rate remains constant and each and 

every fault has an equal probability of being 

detected. However, the detection rate of faults 

depends on testing effort, testing skills, size of 

the program and much more. Thus, the fault 

detection rate is not smooth and there is a 

possibility that it can change. It is very 

significant to incorporate the method of change-

point in order to analyse the reliability growth 

in the changing testing process. The SRGMs in 

which the change point effect is not considered 

in the estimation of software reliability is not 

the true representative of the actual testing 

environment (Zhao, 1993; Gupta, 2008). 

In the process of analysing the change point, the 

studies that were conducted were related in 

estimating the change point position in case of 

a single change point, finding out the number of 

change points that are present and their 

positions if multiple change points exist and 

determining the parameters in case the 

distribution function between the change point 

remains same. Many authors have studied the 

problem of change point. 

The reliability of a software can be assessed 

accurately with the change point phenomenon. 

SRGMs that are formulated by incorporating 

the change point method are considered to 

express the factual software reliability 

behaviour. As mentioned above, there are 

chances of no change point, only one change 

point and a number of change points depending 

upon the testing environment. Initially, Zhao 

(1993) carried out the studies for analysing the 

hardware and software reliability by 

incorporating the change point method. Later, a 

number of researchers proposed numerous 

SRGMs with the change point concept for 

measuring and predicting the software 

reliability (Chang, 2001; Huang, 2005; Shyur, 

2003; Zhao, 1993; Zou, 2003). 

 

SRGMs that have been proposed so far are built 

with diverse limitations considering different 

factors. Fault Reduction factor (FRF) is one of 

the factors that plays a very significant role in 

determining the reliability of the software 

system. Musa (1975) first identified the 

significance of FRF for determining the 

reliability growth. 

In the process of testing, there is often seen 

some sort of relationship between the faults and 

the failures (Musa et al., 1987). When a user 

observes an unexpected software system 

behaviour, the failure is said to have occurred. 

On the other hand, data defined incorrectly in 

the software program or any other incorrect step 

results in a fault that further causes failure. 

Motivation  

It is a must to assess the reliability of the 

software before it is deployed in the market. The 

customer satisfaction and acceptance are very 

unrelenting whereas on the other hand there is 

not too much flexibility in the testing costs and 

the scheduling deadline of the project. As a 

result, there arises a need to make a balance 

between these two (Kapur et al., 2011a). Even 

after employing skilled testing staff, upgrading 

the testing tools and techniques, using testing 

resources in an optimized manner etc. so as to 

minimize the testing costs and release the 

software in the market on time, the management 

fails to understand the practicality involved 

behind the testing process. The process of fault 

detection, isolation and correction, the effort 

utilized in removing the faults, the fault 

dependency, the severity of faults, the time lag 

involved in the detection process and the 

correction process etc. makes the job of testing 

team bound to take time and involve costs. The 

decision on the release time of the software by 

the management is determined by considering 

the reliability growth versus the cost involved 

in the testing process. Number of ways are 

available to evaluate the reliability of the 

software. Software Reliability Growth Models 

(SRGMs) is one of the most popular methods 

among all the available methods. The most 

important part in building these SRGMs is the 

ability to perceive the real environment and then 

effectively model them as assumptions under 

some given analytical framework. 

These SRGMs are able to represent the testing 

process by taking into consideration perfect/ 

imperfect debugging modelling, learning effect 

modelling, testing-effort modelling, change-

point modelling, FRF modelling so as to 

effectively incorporate the actual/real behaviour 

of the software development process by making 

use of state-of-art methodologies, strategies and 

tools. Many industrial environments and 

development processes make use of these 

SRGMs. In order to build confidence in the 

amount and levels of testing conducted on 

http://www.sciencepub.net/researcher
http://www.sciencepub.net/researcher
mailto:researcher135@gmail.com


             Researcher 2025;17(3)                                                 http://www.sciencepub.net/researcher     RSJ 

  

http://www.sciencepub.net/researcher                                                         researcher135@gmail.com 

 

  

15 

safety-critical and mission-critical applications, 

some of these SRGMs have been selectively 

used. The SRGMs that have been proposed so 

far covers only some aspects of the T&D 

(Testing and Debugging) environment and thus 

can be applied to some particular reliability 

growth phenomenon. This study proposes 

SRGM that is generalized in nature, covers 

many aspects of T&D environment together and 

has the capability of obtaining several different 

SRGMs. 

Non-Homogeneous Poisson Process  

Since years, reliability modelling has been used 

to formulate models that can be used to 

represent and analyse the operation of the real 

testing environment. There are two main types 

of processes that are used for modelling 

stochastic processes: continuous and discrete. 

Counting process which is present in the class 

of discrete stochastic processes is used for 

reliability engineering. A counting process is 

defined as the process which is used to describe 

the occurrence of some event (e.g. occurrence 

of a software failure, a software repair etc. In 

reliability engineering, poisson process is most 

widely used in order to represent a counting 

process. To describe the reliability growth and 

the deteriorating trends in hardware reliability, 

non-Homogeneous poisson process is used. 

With this, a number of NHPP based SRGMs 

have been proposed by many researchers 

following the trends in hardware reliability. 

With the help of SRGM, one can describe the 

process of failure occurrence and fault removal 

phenomenon with respect to time. The unit of 

time taken can either be clock time, calendar 

time, execution time or even test cases 

Properties of NHPP Software Reliability 

Modelling  

• The shape that can be taken by the failure 

curve in NHPP-based SRGMs can be either 

concave, S-shaped or a mixture of two. Thus, 

NHPP-based models can be categorized into 

two broad categories: Concave models and S-

shaped models.  

• The failure pattern in concave models exhibit 

an exponential shape.  

• In both NHPP-based models, it is seen that as 

the number of detected faults increases with 

time, the fault detection rate starts decreasing 

and tends to approach some finite value. Thus, 

these models have same asymptotic property.  

• The learning effect during T&D process is 

described by the S-shaped models. The S-

shaped failure pattern describes the initial 

process of testing to be less efficient as 

compared to the testing performed in the later 

stages. 

Concluding Remarks  

A brief overview of the chosen area of research 

is given with emphasis on Software Reliability 

Engineering (SRE). The motivation which is 

behind this research work is also discussed. 

Moreover, the various objectives to be achieved 

in this research study are also presented. After 

this, the contributions that are made in this 

research are presented. Finally, the chapter 

concludes with the organisation of the 

remaining chapters of the study. 

References 

Aggarwal, A. G., Tandon, A., & Nijhawan, N. 

(2015). ‘A Change Point Based Discrete SRGM 

for Multi-Release Software System’, In: 

Published in the Proceedings of International 

Conference on Evidence Based Management 

(ICEBM), BITS Pilani, pp. 674-678. 

Ahmad, N., Khan, M.G.M., & Rafi, L.S. (2011). 

‘Analysis of an inflection S-shaped software 

reliability model considering log-logistic 

testing-effort and imperfect debugging’, 

International Journal of Computer Science and 

Network Security, vol. 11, no. 1, pp. 161–171.  

Bittanti, S., Bolzern, P., Pedrotti, E., Pozzi, M., 

& Scattolini, R. (1988). ‘A flexible modeling 

approach for software reliability growth’, In: 

Goos G, Harmanis J (eds) Software reliability 

modelling and identification, Springer, Berlin, 

pp. 101–140.  

Bokhari, M. U., & Ahmad, N. (2006). ‘Analysis 

of a Software Reliability Growth Models: the 

Case of Log-logistic Test-effort Function’, in: 

Proceedings of the 17th IASTED International 

Conference on Modeling and Simulation, 

Montreal, Canada, pp. 540-545. 

Chiu, K. C., Huang, Y. S., & Lee, T. Z. (2008). 

‘A study of software reliability growth from the 

perspective of learning effects’, Reliability 

Engineering and System Safety, vol. 93, issue 

10, pp. 1410–1421.  

Dijkstra. (1972). ‘Disciplines of Programming’, 

Prentice Hall.  

Garmabaki, A. S. H., Barabadi, A., Yuan, F., Lu, 

J., & Ayele, Y. Z. (2015). ‘Reliability Modeling 

of Successive Release of Software using NHPP’, 

Industrial Engineering and Engineering 

Management (IEEM), IEEE International 

Conference, pp. 761-766 

Hamilton, P. A., & Musa, J. D. (1978). 

‘Measuring reliability of computation center 

software’, in: Proceedings of the Third 

International Conference on Software 

Engineering, pp. 29–36.  

Hsu, C. J., Huang, C. Y., & Chang, J. R. (2011). 

‘Enhancing software reliability modelling and 

prediction through the introduction of time-

variable fault reduction factor’, Applied 

http://www.sciencepub.net/researcher
http://www.sciencepub.net/researcher
mailto:researcher135@gmail.com


             Researcher 2025;17(3)                                                 http://www.sciencepub.net/researcher     RSJ 

  

http://www.sciencepub.net/researcher                                                         researcher135@gmail.com 

 

  

16 

Mathematical Modelling, vol. 35, no. 1, pp. 

506–521. 

 

 

2/5/2025 

http://www.sciencepub.net/researcher
http://www.sciencepub.net/researcher
mailto:researcher135@gmail.com

