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Abstract

In this paper using Jiang function 
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 we prove that the new prime theorems (1541)-(1590) contain infinitely many prime solutions and no prime solutions. From (6) we are able to find the smallest solution. 
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It will be another million years at least, before we understand the primes.

Paul Erdos (1913-1996)

The New Prime Theorem (1541)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image18.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]

       
[image: image19.wmf]{

}

N

N

J

j

k

jp

N

P

N

k

k

k

k

k

log

)

(

)

3022

(

)

(

~

prime

:

)

2

,

(

1

1

2

3022

w

f

w

w

p

-

-

=

-

+

£

=

,  （6）

where 
[image: image20.wmf]()(1)

P

P

fw

=P-

.

From (6) we are able to find the smallest solution 
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Example 1. Let 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1542)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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Example 1. Let 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1543)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
[image: image65.wmf]j

k

jp

-

+

3026

 is a prime.

Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1544)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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Example 1. Let 
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Example 2. Let 
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1545)
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Using Jiang function we prove that 
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Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]
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（1）contain no prime solutions. 1 is not a prime.
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1546)
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Using Jiang function we prove that 
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Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image143.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image145.wmf]()(1)
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.

From (6) we are able to find the smallest solution 
[image: image146.wmf]0

(,2)1

k

N

p

³

.

Example 1. Let 
[image: image147.wmf]5

,

3

=

k


From (2) and (3) we have

                            
[image: image148.wmf]2

()0

J

w

=

.                             （7）

We prove that for 
[image: image149.wmf]5

,

3

=

k


（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image150.wmf]5

,

3
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k


From (2) and (3) we have

                           
[image: image151.wmf]2
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¹

.                             （8）

We prove that for 
[image: image152.wmf]5

,
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k


(1) contain infinitely many prime solutions.

The New Prime Theorem (1547)
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Abstract

Using Jiang function we prove that 
[image: image154.wmf]j

k

jp
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+

3034

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image155.wmf]k

 be a given odd prime.
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              （1）

Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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where 
[image: image158.wmf]P
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, 
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 If 
[image: image161.wmf]2
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 then from (2) and (3) we have

                             
[image: image162.wmf]2
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w

¹

                                （4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image163.wmf]k

 there are infinitely many primes 
[image: image164.wmf]P

 such that each of 
[image: image165.wmf]j

k

jp

-

+

3034

 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image166.wmf]1

)
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-

=

P
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c

. Substituting it into (2) we have

                            
[image: image167.wmf]2

()0

J

w

=

                                  （5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image168.wmf]2
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J

w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image170.wmf]()(1)

P

P

fw

=P-

.

From (6) we are able to find the smallest solution 
[image: image171.wmf]0

(,2)1
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Example 1. Let 
[image: image172.wmf]83

,
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k


From (2) and (3) we have

                            
[image: image173.wmf]2
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w
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.                                  （7）

We prove that for 
[image: image174.wmf]83

,

3

=

k


（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image175.wmf]83

,

3
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From (2) and (3) we have

                           
[image: image176.wmf]2
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¹

.                                  （8）

We prove that for 
[image: image177.wmf]83

,

3
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1548)
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Using Jiang function we prove that 
[image: image179.wmf]j

k

jp
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+
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image180.wmf]k

 be a given odd prime.
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                （1）

Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]

                      
[image: image182.wmf])]

(

1

[

)

(

2

2

P

P

J

P

c

w

-

-

P

=

>

.                   （2）

where 
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 If 
[image: image186.wmf]2
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 then from (2) and (3) we have

                             
[image: image187.wmf]2
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                               （4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image188.wmf]k

 there are infinitely many primes 
[image: image189.wmf]P

 such that each of 
[image: image190.wmf]j

k
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 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image191.wmf]1
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. Substituting it into (2) we have

                            
[image: image192.wmf]2
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=

                                 （5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image193.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image195.wmf]()(1)
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From (6) we are able to find the smallest solution 
[image: image196.wmf]0
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Example 1. Let 
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From (2) and (3) we have
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1549)
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Using Jiang function we prove that 
[image: image204.wmf]j

k
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+
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image205.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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where 
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 If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image213.wmf]k

 there are infinitely many primes 
[image: image214.wmf]P

 such that each of 
[image: image215.wmf]j

k
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 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image216.wmf]1
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. Substituting it into (2) we have

                            
[image: image217.wmf]2
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=

                                      （5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image218.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image220.wmf]()(1)
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From (6) we are able to find the smallest solution 
[image: image221.wmf]0
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.

Example 1. Let 
[image: image222.wmf]3
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From (2) and (3) we have

                            
[image: image223.wmf]2
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.                                      （7）

We prove that for 
[image: image224.wmf]3

=
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image225.wmf]3
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From (2) and (3) we have
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We prove that for 
[image: image227.wmf]3
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1550)
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Using Jiang function we prove that 
[image: image229.wmf]j

k
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+
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image230.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image238.wmf]k

 there are infinitely many primes 
[image: image239.wmf]P

 such that each of 
[image: image240.wmf]j
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 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image241.wmf]1

)

(

-

=

P

P

c

. Substituting it into (2) we have
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=

                                       （5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image243.wmf]2
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 then we have asymptotic formula [1,2]

       
[image: image244.wmf]{

}

N

N

J

j

k

jp

N

P

N

k

k

k

k

k

log

)

(

)

3040

(

)

(

~

prime

:

)

2

,

(

1

1

2

3040

w

f

w

w

p

-

-

=

-

+

£

=

,  （6）

where 
[image: image245.wmf]()(1)
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From (6) we are able to find the smallest solution 
[image: image246.wmf]0
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Example 1. Let 
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From (2) and (3) we have
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1551)
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Abstract

Using Jiang function we prove that 
[image: image254.wmf]j

k
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+
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image255.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image263.wmf]k

 there are infinitely many primes 
[image: image264.wmf]P

 such that each of 
[image: image265.wmf]j
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 is a prime.

Using Fermat’s little theorem from (3) we have 
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. Substituting it into (2) we have
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                                      （5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image268.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image270.wmf]()(1)
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From (6) we are able to find the smallest solution 
[image: image271.wmf]0
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Example 1. Let 
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From (2) and (3) we have
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We prove that for 
[image: image274.wmf]79
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1552)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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[image: image287.wmf]2

()0

J

w

¹

                               （4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image288.wmf]k

 there are infinitely many primes 
[image: image289.wmf]P

 such that each of 
[image: image290.wmf]j

k

jp

-

+

3044

 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image291.wmf]1

)

(

-

=

P

P

c

. Substituting it into (2) we have

                            
[image: image292.wmf]2

()0

J

w

=

                                （5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image293.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image295.wmf]()(1)

P
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From (6) we are able to find the smallest solution 
[image: image296.wmf]0

(,2)1

k

N

p
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.

Example 1. Let 
[image: image297.wmf]1523

,

5

,

3

=

k


From (2) and (3) we have

                            
[image: image298.wmf]2

()0

J

w

=

.                                （7）

We prove that for 
[image: image299.wmf]1523

,

5

,

3

=

k


（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image300.wmf]1523

,

5

,

3

¹

k


From (2) and (3) we have

                           
[image: image301.wmf]2
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¹

.                               （8）

We prove that for 
[image: image302.wmf]1523

,

5

,

3

¹

k


(1) contain infinitely many prime solutions.

The New Prime Theorem (1553)
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Abstract

Using Jiang function we prove that 
[image: image304.wmf]j

k

jp

-

+

3046

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image305.wmf]k

 be a given odd prime.
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                （1）

Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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where 
[image: image308.wmf]P
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[image: image309.wmf])
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 is the number of solutions of congruence
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 If 
[image: image311.wmf]2
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 then from (2) and (3) we have

                             
[image: image312.wmf]2

()0
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¹

                               （4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image313.wmf]k

 there are infinitely many primes 
[image: image314.wmf]P

 such that each of 
[image: image315.wmf]j

k

jp

-

+

3046

 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image316.wmf]1

)

(

-

=

P

P

c

. Substituting it into (2) we have

                            
[image: image317.wmf]2

()0

J

w

=

                                 （5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image318.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image320.wmf]()(1)
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.

From (6) we are able to find the smallest solution 
[image: image321.wmf]0

(,2)1

k

N

p

³

.

Example 1. Let 
[image: image322.wmf]3

=

k


From (2) and (3) we have

                            
[image: image323.wmf]2

()0

J

w

=

.                             （7）

We prove that for 
[image: image324.wmf]3

=

k


（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image325.wmf]3

¹

k


From (2) and (3) we have

                           
[image: image326.wmf]2
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.                              （8）

We prove that for 
[image: image327.wmf]3

¹

k


(1) contain infinitely many prime solutions.

The New Prime Theorem (1554)
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Abstract

Using Jiang function we prove that 
[image: image329.wmf]j

k

jp

-

+

3048

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image330.wmf]k

 be a given odd prime.
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                （1）

Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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where 
[image: image333.wmf]P
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 is the number of solutions of congruence
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 If 
[image: image336.wmf]2
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 then from (2) and (3) we have

                             
[image: image337.wmf]2
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                             （4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image338.wmf]k

 there are infinitely many primes 
[image: image339.wmf]P

 such that each of 
[image: image340.wmf]j

k
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+
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 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image341.wmf]1
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c

. Substituting it into (2) we have

                            
[image: image342.wmf]2
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w

=

                               （5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image343.wmf]2
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¹

 then we have asymptotic formula [1,2]
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where 
[image: image345.wmf]()(1)
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.

From (6) we are able to find the smallest solution 
[image: image346.wmf]0
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Example 1. Let 
[image: image347.wmf]3049

,
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From (2) and (3) we have
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.                             （7）

We prove that for 
[image: image349.wmf]3049

,
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,
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,

7

,
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,
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=

k


（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image350.wmf]3049

,
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,
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,

5

,
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k


From (2) and (3) we have

                           
[image: image351.wmf]2
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.                              （8）

We prove that for 
[image: image352.wmf]3049

,
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7
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k


(1) contain infinitely many prime solutions.

The New Prime Theorem (1555)
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Abstract

Using Jiang function we prove that 
[image: image354.wmf]j

k
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+
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image355.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]

                      
[image: image357.wmf])]

(

1

[

)

(

2

2

P

P

J

P

c

w

-

-

P

=

>

.                   （2）

where 
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image363.wmf]k

 there are infinitely many primes 
[image: image364.wmf]P

 such that each of 
[image: image365.wmf]j

k
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-

+

3050

 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image366.wmf]1
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. Substituting it into (2) we have
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=

                                 （5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image368.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image370.wmf]()(1)
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From (6) we are able to find the smallest solution 
[image: image371.wmf]0
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Example 1. Let 
[image: image372.wmf]11

,
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From (2) and (3) we have

                            
[image: image373.wmf]2
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.                             （7）

We prove that for 
[image: image374.wmf]11

,

3

=

k


（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image375.wmf]11

,
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From (2) and (3) we have
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We prove that for 
[image: image377.wmf]11

,
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1556)
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Abstract

Using Jiang function we prove that 
[image: image379.wmf]j

k
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-

+
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image380.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image388.wmf]k

 there are infinitely many primes 
[image: image389.wmf]P

 such that each of 
[image: image390.wmf]j
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 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image391.wmf]1
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. Substituting it into (2) we have
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=

                             （5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image393.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image395.wmf]()(1)
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From (6) we are able to find the smallest solution 
[image: image396.wmf]0
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Example 1. Let 
[image: image397.wmf]29

,
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From (2) and (3) we have
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.                             （7）

We prove that for 
[image: image399.wmf]29

,
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,
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k


（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image400.wmf]29

,
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From (2) and (3) we have
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.                             （8）

We prove that for 
[image: image402.wmf]29

,
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1557)
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Abstract

Using Jiang function we prove that 
[image: image404.wmf]j
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image405.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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where 
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 If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image413.wmf]k

 there are infinitely many primes 
[image: image414.wmf]P

 such that each of 
[image: image415.wmf]j
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 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image416.wmf]1
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. Substituting it into (2) we have
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=

                                   （5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image418.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image420.wmf]()(1)
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From (6) we are able to find the smallest solution 
[image: image421.wmf]0
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Example 1. Let 
[image: image422.wmf]1019

,
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From (2) and (3) we have
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We prove that for 
[image: image424.wmf]1019

,
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k


（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image425.wmf]1019
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From (2) and (3) we have

                           
[image: image426.wmf]2
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We prove that for 
[image: image427.wmf]1019

,
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1558)
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Abstract

Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image430.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]

                      
[image: image432.wmf])]

(

1

[

)

(

2

2

P

P

J

P

c

w

-

-

P

=

>

.                   （2）

where 
[image: image433.wmf]P

P

P

=

w

, 
[image: image434.wmf])

(

P

c

 is the number of solutions of congruence

                
[image: image435.wmf]1

,

,

1

),

(mod

0

)

(

3056

1

1

-

=

º

-

+

P

-

=

p

q

p

j

k

jq

k

j

L

.       （3）

 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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From (6) we are able to find the smallest solution 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image450.wmf]383

,

17

,

5

,

3

¹

k


From (2) and (3) we have

                           
[image: image451.wmf]2

()0

J

w

¹

.                              （8）

We prove that for 
[image: image452.wmf]383

,

17

,

5

,

3

¹

k


(1) contain infinitely many prime solutions.

The New Prime Theorem (1559)
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Using Jiang function we prove that 
[image: image454.wmf]j

k
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+
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image455.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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where 
[image: image458.wmf]P

P

P

=

w

, 
[image: image459.wmf])

(

P

c

 is the number of solutions of congruence

                
[image: image460.wmf]1

,

,

1

),

(mod

0

)

(

3058

1

1

-

=

º

-

+

P

-

=

p

q

p

j

k

jq

k

j

L

.      （3）

 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image463.wmf]k

 there are infinitely many primes 
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 such that each of 
[image: image465.wmf]j

k
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 is a prime.

Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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From (6) we are able to find the smallest solution 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1560)
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Using Jiang function we prove that 
[image: image479.wmf]j

k
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image480.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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 is a prime.

Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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From (2) and (3) we have
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1561)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]
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where 
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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Example 2. Let 
[image: image525.wmf]3

¹

k


From (2) and (3) we have

                           
[image: image526.wmf]2

()0

J

w

¹

.                            （8）

We prove that for 
[image: image527.wmf]3

¹

k


(1) contain infinitely many prime solutions.

The New Prime Theorem (1562)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image543.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]

       
[image: image544.wmf]{

}

N

N

J

j

k

jp

N

P

N

k

k

k

k

k

log

)

(

)

3064

(

)

(

~

prime

:

)

2

,

(

1

1

2

3064

w

f

w

w

p

-

-

=

-

+

£

=

,  （6）

where 
[image: image545.wmf]()(1)

P

P

fw

=P-

.

From (6) we are able to find the smallest solution 
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Example 1. Let 
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From (2) and (3) we have
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1563)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Proof. We have Jiang function [1,2]

                      
[image: image557.wmf])]

(

1

[

)

(

2

2

P

P

J

P

c

w

-

-

P

=

>

.                  （2）

where 
[image: image558.wmf]P

P

P

=

w

, 
[image: image559.wmf])

(

P

c

 is the number of solutions of congruence

                
[image: image560.wmf]1

,

,

1

),

(mod

0

)

(

3066

1

1

-

=

º

-

+

P

-

=

p

q

p

j

k

jq

k

j

L

.         （3）

 If 
[image: image561.wmf]2

)

(

-

£

P

P

c

 then from (2) and (3) we have

                             
[image: image562.wmf]2

()0

J

w

¹

                           （4）

We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]
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where 
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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From (2) and (3) we have
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1564)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image580.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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 then from (2) and (3) we have

                             
[image: image587.wmf]2
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image588.wmf]k

 there are infinitely many primes 
[image: image589.wmf]P

 such that each of 
[image: image590.wmf]j
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 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image591.wmf]1
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
[image: image595.wmf]()(1)
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From (6) we are able to find the smallest solution 
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Example 1. Let 
[image: image597.wmf]53
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From (2) and (3) we have
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We prove that for 
[image: image599.wmf]53
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image600.wmf]53
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From (2) and (3) we have
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We prove that for 
[image: image602.wmf]53

,

5

,

3

¹

k


(1) contain infinitely many prime solutions.

The New Prime Theorem (1565)
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Using Jiang function we prove that 
[image: image604.wmf]j

k
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+

3070

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image605.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image613.wmf]k

 there are infinitely many primes 
[image: image614.wmf]P

 such that each of 
[image: image615.wmf]j

k

jp

-

+

3070

 is a prime.

Using Fermat’s little theorem from (3) we have 
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. Substituting it into (2) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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From (2) and (3) we have
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1566)
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Using Jiang function we prove that 
[image: image629.wmf]j
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image630.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image638.wmf]k

 there are infinitely many primes 
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 such that each of 
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Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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where 
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From (6) we are able to find the smallest solution 
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Example 1. Let 
[image: image647.wmf]769

,

257

,

193

,

97

,

17

,

13

,

7

,

5

,

3

=

k


From (2) and (3) we have
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1567)
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Using Jiang function we prove that 
[image: image654.wmf]j
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image655.wmf]k

 be a given odd prime.
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Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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where 
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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From (2) and (3) we have
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1568)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image680.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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where 
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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We prove that for 
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1569)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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where 
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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From (2) and (3) we have

                            
[image: image723.wmf]2
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image725.wmf]3079

,
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1570)
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Using Jiang function we prove that 
[image: image729.wmf]j
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+
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image730.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image738.wmf]k

 there are infinitely many primes 
[image: image739.wmf]P

 such that each of 
[image: image740.wmf]j

k
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 is a prime.

Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
[image: image745.wmf]()(1)
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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From (2) and (3) we have
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1571)
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Using Jiang function we prove that 
[image: image754.wmf]j
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image755.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image763.wmf]k

 there are infinitely many primes 
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 such that each of 
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 is a prime.

Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image768.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image770.wmf]()(1)
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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From (2) and (3) we have
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We prove that for 
[image: image774.wmf]3083
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1572)
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Using Jiang function we prove that 
[image: image779.wmf]j
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image780.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
[image: image790.wmf]j
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 is a prime.

Using Fermat’s little theorem from (3) we have 
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. Substituting it into (2) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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From (2) and (3) we have
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1573)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image805.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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 is a prime.

Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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where 
[image: image820.wmf]()(1)
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image825.wmf]3
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From (2) and (3) we have
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We prove that for 
[image: image827.wmf]3

¹

k


(1) contain infinitely many prime solutions.

The New Prime Theorem (1574)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image830.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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 is a prime.

Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
[image: image852.wmf]3089

,

773

,

17

,

5

,

3

¹

k


(1) contain infinitely many prime solutions.

The New Prime Theorem (1575)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
[image: image864.wmf]P

 such that each of 
[image: image865.wmf]j
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 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image866.wmf]1
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. Substituting it into (2) we have
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                             （5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image868.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image870.wmf]()(1)
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From (6) we are able to find the smallest solution 
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Example 1. Let 
[image: image872.wmf]619
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From (2) and (3) we have
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1576)
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Abstract

Using Jiang function we prove that 
[image: image879.wmf]j

k
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image880.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
[image: image886.wmf]2

)

(

-

£

P

P

c

 then from (2) and (3) we have
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()0

J

w

¹

                           （4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image888.wmf]k

 there are infinitely many primes 
[image: image889.wmf]P

 such that each of 
[image: image890.wmf]j

k
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+
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 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image891.wmf]1
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. Substituting it into (2) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image893.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image895.wmf]()(1)
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From (6) we are able to find the smallest solution 
[image: image896.wmf]0
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Example 1. Let 
[image: image897.wmf]5

,
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From (2) and (3) we have
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We prove that for 
[image: image899.wmf]5
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image900.wmf]5
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From (2) and (3) we have
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We prove that for 
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,

3

¹

k


(1) contain infinitely many prime solutions.

The New Prime Theorem (1577)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image905.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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where 
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image913.wmf]k

 there are infinitely many primes 
[image: image914.wmf]P

 such that each of 
[image: image915.wmf]j
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 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image916.wmf]1
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. Substituting it into (2) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
[image: image920.wmf]()(1)
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From (6) we are able to find the smallest solution 
[image: image921.wmf]0
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Example 1. Let 
[image: image922.wmf]443

,
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From (2) and (3) we have
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1578)
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Using Jiang function we prove that 
[image: image929.wmf]j
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image930.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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where 
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image938.wmf]k

 there are infinitely many primes 
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 such that each of 
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 is a prime.

Using Fermat’s little theorem from (3) we have 
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. Substituting it into (2) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
[image: image945.wmf]()(1)
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1579)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image955.wmf]k

 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image963.wmf]k

 there are infinitely many primes 
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 such that each of 
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 is a prime.

Using Fermat’s little theorem from (3) we have 
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. Substituting it into (2) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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where 
[image: image970.wmf]()(1)
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From (6) we are able to find the smallest solution 
[image: image971.wmf]0
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Example 1. Let 
[image: image972.wmf]3
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From (2) and (3) we have
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We prove that for 
[image: image974.wmf]3
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have

                           
[image: image976.wmf]2

()0

J

w

¹

.                            （8）

We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1580)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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 If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image988.wmf]k

 there are infinitely many primes 
[image: image989.wmf]P

 such that each of 
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 is a prime.

Using Fermat’s little theorem from (3) we have 
[image: image991.wmf]1

)

(

-

=

P

P

c

. Substituting it into (2) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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[image: image994.wmf]{

}

N

N

J

j

k

jp

N

P

N

k

k

k

k

k

log

)

(

)

3100

(

)

(

~

prime

:

)

2

,

(

1

1

2

3100

w

f

w

w

p

-

-

=

-

+

£

=

,  （6）

where 
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From (6) we are able to find the smallest solution 
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Example 1. Let 
[image: image997.wmf]311

,

101

,

11

,

5

,

3

=

k


From (2) and (3) we have
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1581)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1582)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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 is a prime.

Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]
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From (6) we are able to find the smallest solution 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1583)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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We prove that for 
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Example 2. Let 
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1584)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]
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The New Prime Theorem (1585)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]
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Example 1. Let 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image1125.wmf]11

,

3

¹

k


From (2) and (3) we have

                           
[image: image1126.wmf]2

()0

J

w

¹

.                            （8）
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1586)
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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Proof. We have Jiang function [1,2]

                      
[image: image1132.wmf])]

(

1

[

)

(

2

2

P

P

J

P

c

w

-

-

P

=

>

.                  （2）

where 
[image: image1133.wmf]P

P

P

=

w

, 
[image: image1134.wmf])

(

P

c

 is the number of solutions of congruence

                
[image: image1135.wmf]1

,

,

1

),

(mod

0

)

(

3112

1

1

-

=

º

-

+

P

-

=

p

q

p

j

k

jq

k

j

L

.         （3）

 If 
[image: image1136.wmf]2

)

(

-

£

P

P

c

 then from (2) and (3) we have

                             
[image: image1137.wmf]2

()0

J

w

¹

                           （4）

We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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We prove that (1) contain no prime solutions [1,2]
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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We prove that for 
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Example 2. Let 
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We prove that for 
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The New Prime Theorem (1587)
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Using Jiang function we prove that 
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Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1588)
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Using Jiang function we prove that 
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Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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Example 1. Let 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
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(1) contain infinitely many prime solutions.

The New Prime Theorem (1589)
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Using Jiang function we prove that 
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Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
[image: image1215.wmf]j

k

jp

-

+

3188

 is a prime.

Using Fermat’s little theorem from (3) we have 
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We prove that (1) contain no prime solutions [1,2]

If 
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From (6) we are able to find the smallest solution 
[image: image1221.wmf]0

(,2)1

k

N

p

³

.

Example 1. Let 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
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The New Prime Theorem (1590)
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Using Jiang function we prove that 
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Theorem. Let 
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 be a given odd prime.
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Contain infinitely many prime solutions and no prime solutions. 

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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Using Fermat’s little theorem from (3) we have 
[image: image1241.wmf]1

)

(

-

=

P

P

c

. Substituting it into (2) we have

                            
[image: image1242.wmf]2

()0

J

w

=

                             （5）

We prove that (1) contain no prime solutions [1,2]
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From (6) we are able to find the smallest solution 
[image: image1246.wmf]0

(,2)1

k

N

p

³

.

Example 1. Let 
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We prove that for 
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（1）contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
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(1) contain infinitely many prime solutions.
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Szemerédi’s theorem does not directly to the primes, because it cannot count the number of primes.  Cramér’s random model cannot prove any prime problems. The probability of 
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 we obtain the prime conjecture, which is false. The tool of additive prime number theory is basically the Hardy-Littlewood prime tuples conjecture, but cannot prove and count any prime problems[6].

   Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every reason to believe that there are some mysteries which the human mind will never penetrate.

                                                        Leonhard Euler(1707-1783)

  It will be another million years, at least, before we understand the primes.

                                                 Paul Erdos(1913-1996)
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Abstract

We define that prime equations
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Jiang’s function is accurate sieve function. Using Jiang’s function we prove about 600 prime theorems [6]. Jiang’s function provides proofs of the prime theorems which are simple enough to understand and accurate enough to be useful.

      Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every reason to believe that there are some mysteries which the human mind will never penetrate.

                                          Leonhard Euler

      It will be another million years, at least, before we understand the primes.

                                         Paul Erdös
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（2）is called infinitely many prime equations (IMPE). Every equation has infinitely many prime solutions. We have
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We replace sets of prime numbers by IMPE. (2) is the fundamental tool for proving the prime theorems in prime distribution.
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Every equation has infinitely many prime solutions.

THEOREM. We define that prime equations
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are polynomials (with integer coefficients) irreducible over integers, where 
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PROOF. Firstly, we have Jiang’s function [1-11]

              
[image: image1306.wmf]1

3

()[(1)()]

n

n

P

JPP

wc

+

£

=P--

,                       （6）

where 
[image: image1307.wmf]()

P

c

 is called sieve constant and denotes the number of solutions for the following congruence

             
[image: image1308.wmf]1

1

(,,)0(mod)

k

in

i

fqqP

=

Pº

L

,                      （7）

where 
[image: image1309.wmf]1

1,,1,,1,,1

n

qPqP

=-=-

LLL

.


[image: image1310.wmf]1

()

n

J

w

+

 denotes the number of sets of 
[image: image1311.wmf]1

,,

n

PP

L

 prime equations such that 
[image: image1312.wmf]111

(,,),,(,,)

nkn

fPPfPP

LLL

 are prime equations. If 
[image: image1313.wmf]1

()0

n

J

w

+

=

 then (5) has finite prime solutions. If 
[image: image1314.wmf]1

()0

n

J

w

+

¹

 using 
[image: image1315.wmf]()

P

c

 we sift out from (2) prime equations which can not be represented 
[image: image1316.wmf]1

,,

n

PP

L

, then residual prime equations of (2) are 
[image: image1317.wmf]1

,,

n

PP

L

 prime equations such that 
[image: image1318.wmf]11

(,,),,

n

fPP

LL

 
[image: image1319.wmf]1

(,,)

kn

fPP

L

 are  prime equations. Therefore we prove that there exist infinitely many primes 
[image: image1320.wmf]1

,,

n

PP

L

 such that 
[image: image1321.wmf]11

(,,),,

n

fPP

LL

 
[image: image1322.wmf]1

(,,)

kn

fPP

L

 are primes. 

Secondly, we have the best asymptotic formula [2,3,4,6]
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（8）is called a unite prime formula in prime distribution. Let 
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Number theorists believe that there are infinitely many twin primes, but they do not have rigorous proof of this old conjecture by any method. All the prime theorems are conjectures except the prime number theorem, because they do not prove that prime equations have infinitely many prime solutions. We prove the following conjectures by this theorem.

Example 1. Twin primes 
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From (6) and (7) we have Jiang’s function
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From (8) we have the best asymptotic formula
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In 1996 we proved twin primes conjecture [1]

Remark. 
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Example 2. Even Goldbach’s conjecture 
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From (6) and (7) we have Jiang’s function
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From (8) we have the best asymptotic formula
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In 1996 we proved even Goldbach’s conjecture [1]

Example 3. Prime equations 
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From (6) and (7) we have Jiang’s function
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From (8) we have the best asymptotic formula
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Example 4. Odd Goldbach’s conjecture 
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 is the sum of three primes.

From (6) and (7) we have Jiang’s function
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From (8) we have the best asymptotic formula
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Example 5. Prime equation 
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From (6) and (7) we have Jiang’s function
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From (8) we have the best asymptotic formula
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Note. deg
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Example 6 [12].  Prime equation 
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From (6) and (7) we have Jiang’s function
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From (8) we have the best asymptotic formula
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Example 7 [13].  Prime equation 
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From (6) and (7) we have Jiang’s function
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From (8) we have the best asymptotic formula
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Example 8 [14-20]. Arithmetic progressions consisting only of primes. We define the arithmetic progressions of length 
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From (8) we have the best asymptotic formula
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From (8) we have the best asymptotic formula
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Example 9. It is a well-known conjecture that one of 
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Example 11. Prime equation 
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From (8) we have the best asymptotic formula
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In the same way we can prove 
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 which has the same Jiang’s function.

Jiang’s function is accurate sieve function. Using it we can prove any irreducible prime equations in prime distribution. There are infinitely many twin primes but we do not have rigorous proof of this old conjecture by any method [20]. As strong as the numerical evidence may be, we still do not even know whether there are infinitely many pairs of twin primes [21]. All the prime theorems are conjectures except the prime number theorem, because they do not prove the simplest twin primes. They conjecture that the prime distribution is randomness [12-26], because they do not understand theory of prime numbers.
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The Hardy-Littlewood prime k-tuple conjecture is false
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Abstract

Using Jiang function we prove Jiang prime 
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-tuple theorem. We prove that the Hardy-Littlewood prime 
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-tuple conjecture is false. Jiang prime 
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-tuple theorem can replace the Hardy-Littlewood prime 
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-tuple conjecture.
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Example 1. Let 
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Example 2. Let 
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There exist infinitely many primes 
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Substituting (12) into (4) we have the best asymptotic formula
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Example 4. Let 
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Substituting (14) into (2) we have 
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Example 5. Let 
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It has only 
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（B）The Hardy-Littlewood prime 
[image: image1579.wmf]k

-tuple conjecture[3-14].

This conjecture is generally believed to be true,but has not been proved(Odlyzko et al.exp.math.8(1999)107-118).

We define the prime 
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In 1923 Hardy and Littlewood conjectured the asymptotic formula
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From (21) we have 
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Substituting (23) into (19) we have the asymptotic formula
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which is false see example 1.

Conjecture 2. Let 
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Substituting (25) into (20) we have
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Substituting (26) into (19) we have asymptotic formula
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which is false see example 2.

Conjecutre 3. Let 
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Substituting (29) into (19) we have asymptotic formula 
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Which is false see example 3.

Conjecture 4. Let 
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Substituting (32) into (19) we have asymptotic formula 
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Which is false see example 4.

Conjecutre 5. Let 
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Substituting (34) into (20) we have
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Substituting (35) into (19) we have asymptotic formula
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which is false see example 5.

Conclusion. 
The Hardy-Littlewood prime 
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-tuple conjecture is false. The tool of addive prime number theory is basically the Hardy-Littlewood prime tuples conjecture. Jiang prime 
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-tuple theorem can replace Hardy-Littlewood prime 
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-tuple Conjecture. There cannot be really modern prime theory without Jiang function.
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