

 66

XMI-based Integration Model of Heterogeneous Formal Method in Embedded Software

Haiyang Xu1, 2, Yi Zhuang 1

1. Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing,

China
2. Department of Science and Information Science, Qingdao Agricultural University, Qingdao, China

xhy@nuaa.edu.cn

Abstract: Formal model is important during the software life cycle. It uses formal language to precisely describe
model specification, and can be used to model reasoning and verification. MARTE is an UML profile for real-time
embedded software, and it can model the non-function properties. But it is lack of precise semantic, and cannot
analyze and verify software model with effect. Combining the advantages of Object-Z and PTA in formal modeling,
we propose an integration model of heterogeneous formal method, called PTA-OZ. This model can be used to
analyze and verify the static structure and dynamic sematic of embedded software at the same time. Since formal
method is dull and is not convenient for software developer, we design an executable transformation between
MARTE model and integration model under MDA, and also base on XMI to realize the transformation.
[Xu H, Zhuang Y. XMI-based Integration Model of Heterogeneous Formal Method in Embedded Software.
Researcher 2021;13(9):66-78] ISSN 1553-9865 (print); ISSN 2163-8950 (online).
http://www.sciencepub.net/researcher. 8. doi:10.7537/marsrsj130921.08.

Keywords: Software life cycle; integration formal; heterogeneous method; XMI; meta model

1. Introduction

In the software engineering field, software
life cycle is used to describe the whole process from
software design to complete. This process can be
represented by software development model, while
formal model is one of the important software
development model.

With the developments of computer
technology, embedded systems have been widely
used to control and manage of military equipment,
such as unmanned aerial vehicles, warships or
airplane. Embedded software is an important part of
embedded system, and software quality can directly
affect the performance of the embedded system. How
to improve the trust of embedded software has
become the important subject in the development of
embedded software. MARTE (Modeling and
Analysis of Real Time and Embedded systems) is a
UML profile, which is released by OMG in 2007. It
contains some modeling elements of non-function
properties, such as real time, source. MARTE
extends modeling ability of UML for modeling and
analyzing real-time embedded software by adopting
stereotypes, tagged values and constraints(Mallet et
al, 2009, André et al,2009). Many researchers and
research institutions base on MARTE specification to
model, analysis and verify real time and embedded
software. To efficiently design real time and
embedded software, they present a MOPCOM design
methodology (Vidal et al,2009, Lecomte et al,2011),

which combine the advantages of MARTE with
UML. Researchers use MARTE to describe and
model real time properties of embedded software,
and design a set of transformation rules that could be
used to transform model into VHDL code. Yu et. Al
(Yu et al,2008) adopts MARTE to model high-
performance embedded software, and make use of
formal model checker to verify correctness of design
model. Most of those methods use MARTE to build
embedded software model, then present some
transformation rules to transform model into formal
method or generate software code. So model
transformation plays an important role in MARTE
model and formal verification.

Our motivation is how to reduce the risk of
software development at the early stage of software
life cycle, and how to adequately analysis and verify
MARTE model. All of the existing researches are to
transform MARTE models into one formal method,
which only verify one aspect of MARTE model.
Combining the advantages of Object-Z and PTA, we
present an integrated heterogeneous formal model,
which is named PTA-OZ. This model makes use of
the advantages of Object-Z in structure verification,
and use PTA to verify behavior semantic. Under
MDA, we present an executable transformation
model from MARTE model to PTA-OZ, and realize
the model transformation in XMI.

The rest of the paper is organized as follows.
The basic information of XML and XMI is

 Researcher 2021;13(9) http://www.sciencepub.net/researcher RSJ

 67

introduced in Section 2. The integration model is
given in Section 3. In Section 4 we present how to
implement the transformation from MARTE model
to integration model using eclipse modeling tools.
Section 5 gives a case study to illustrate the
transformation framework, and gives some part of the
transforming result. Concluding remarks are gives in
Section 6.

2. Preliminary

XML(Extensible Markup Language) is one
of the W3C standards, it provides the general format
of structural data and file interchange for data
exchange, web service, and content management.
XML/XSL have been used to develop a web
environment of Object-Z, and they realize the
transformation from Object-Z to UML(Sun et al,
2001). In the next generation network, XML is used
to express the data of different ontology, and Z can
be used to describe the behavior of semantic web,
then Z schema can be transformed into OWL(Web
Ontology Language) (Khan et al,2012).

Although XML defines the structural
elements and properties, XML does not support
object-oriented feature and object-oriented schema
application (Grose et al,2002). XMI (XML-based
Metadata Interchange) is released by OMG, which is
a standard method of meta model exchange and bases
on XML. It provides a standard to express object
data, and it can make up the problems existed in the
transformation from object to XML. XMI provides a
standard method to map object of UML type to
XML, and XMI 2.0 also provides the mapping
between UML model and XML schema.

XMI does not define a XML document, but
define an algorithm to generate XML document from
meta model. It can describe how to generate XML
schema from model, then we can use XML schema to
verify XML document. XMI also can be used to
describe how to generate model form XML
document, DTDs and schema. In the paper, we call
the XML document which is generated by XMI
method XMI document.

XSL(Extensible Stylesheet Language) is
specially made for XML by W3C in 1998, and it is
mainly used to transform XML document to
arbitrarily structural target document, such as XML
document. XSLT(Extensible Stylesheet Language
Transformations) is an important part of XSL, it
defines the transfer language of XML document to
describe how to realize the transformation of a XML
document. In the practical application, we choose
XSLT as the style sheet to control the display of
XML.

XSLT Stylesheet consists of a set of
template rules. Template rules are used to describe

the location and context of node of source document
in target document tree. Each template rule contains
pattern part and template part. Pattern part is used to
match source node in source document, while
template part defines the method to handle source
nod and to define target node, it contains some
element instructions, the copied data from XML
source document or new data. The key of XSLT
transformation process lies in whether could design a
well form XSLT style sheet.

3. Integration Model
3.1 MARTE meta model

MARTE follows the conception of UML,
and it uses different package to classify the
conception. The conceptions in MARTE consist of
foundation, modeling and analyzing(Faugère et
al,2007). While foundation model package defines
the foundational conceptions used to model-based
modeling and analyzing for real time and embedded
systems. Modeling parts support the requirement of
specification and the detailed design. Analyzing parts
define the abstract and specific elements to annotate
models, and support the analysis of performance and
dependability.

We focus on the high-level modeling
concepts of MARTE for real-time and embedded
system, especially the definition of RtUnit and
PpUnit. The design models of MARTE encapsulate
in the HLAM (High-Level Application Modeling)
package. It provides the model element at abstraction
level to model the real-time active object and
behavior, such as the independent control module, the
protection module for limited resources and the
dynamical schedulable resources(Quadri et al,2012).

Figure 1 shows the basic design elements of
HLAM model from the perspective of domain
conception. RtUnit and PpUnit are used to describe
the active objects, and mainly to model the real time
behavior and service of systems.

Figure 2 is the definition of RtUnit and
PpUnit as the stereotype in MARTE profile. The
definition of domain conception is different from the
definition of stereotype, they focus on different
fields. Domain conception emphasizes the conception
of special field, and it directly reflects the conception
model. While stereotype focuses on application
object of special model in UML (Zhang et al,2009).

The class is modeled by meta classes, which
inherit from the abstract meta classifier. RtUnit and
PpUnit stereotypes are applied to meta class
BehavioredClassifier through the extension
relationship. When instancing the RtUnit and PpUnit
stereotypes, they will be bound to an instance of
given meta model as attached characters.

 Researcher 2021;13(9) http://www.sciencepub.net/researcher RSJ

 68

Figure 1. The HLAM model of MARTE

Figure 2. Meta model of RtUnit and PpUnit

 Researcher 2021;13(9) http://www.sciencepub.net/researcher RSJ

 69

3.2 The meta model of integration model

There are different kinds of diagram and chart in MARTE, so MARTE can describe and model the
software system from different view. While MARTE is inaccuracy, the existing formal method only model software
from one point of view. It is necessary for the developer to propose a formal method which can describe the
software system from any point of view(Mӧller et al,2008).

Object-Z is a state-based formal language, and PTA is a behavior-oriented formal language. Combining the
advantages of them, we propose an integration method of heterogeneous formal methods, which is called PTA-OZ.

Definition 1 A PTA-OZ is a 5 tuple PO=(A, I, L, P, OZ), where
 A is a ancestors and is used to inheritance, and it lists all the superclass using inherit clause;

 I consists of interface declaration, which is provided and used by class;

 L is a local channels, and it cannot be accessed outside;

 P is a probability timed automata, and it comprises all of the possible sequence invoked by method using

PTA process notation. PTA part consists of some automata defined by PTA process equations;

 OZ is originated from Object-Z, and it contains a state schema, an initial schema and several operations.

Figure 3. Class of PTA-OZ

Figure 3 is a PTA-OZ class called C. In our integration class schema, PTA part denotes the transitions

between states in the form of behavior. OZ part is mainly used to express the state schema and operation schema in

the form of object-oriented. We distinguish different type of declarations by the keywords method, chan and

local_chan. I is the interface declaration, which extends from Object-Z visibility list. But it is different from Object-

Z, the attributes of I are invisible, and they are private property of PTA-OZ class.

In order to facilitate the encoding of the software life cycle, the OZ part of PTA-OZ is different from

Object-Z. We define two schemas called enable_op and effect_op for the operations in OZ part. The enable_op

schema is used to specify the guard of the operation in term of states, input and the invoked simple parameters. The

effect_op schema could specify the desired state transitions which are related to the states, the transition result state

and all of the parameters.

4. Implementation framework
In the integration model of heterogeneous formalism method, OZ part and PTA part describe the static

semantic and behavior semantic of the class respectively. In this paper, we only study how to realize the
transformation from MARTE model to PTA-OZ model.

 Researcher 2021;13(9) http://www.sciencepub.net/researcher RSJ

 70

Figure 4. The framework of model verification

Figure 4 shows the transformation framework which transforms the MARTE model into OZ part of PTA-

OZ model, and verification processes. The framework mainly contains the following steps:
 System design. We use the modeling elements of Papyrus platform to build the MARTE model of software

system, and transform model in XMI document.

 Document transformation. We adopt DOM Parser to parse document, and store the parsing result into

DOM tree structure that we construct. XSLT Stylesheet is used to control the transformation relationship from

XMI document to result document. XSLT Processor transforms and parses XMI source document in term of the

template rules defined in XSLT Stylesheet.

 Document analysis. According to the previous definition of XMI schema of Object-Z and DTD entity, we

can achieve the Object-Z document, and analyze it in Object-Z type checker, such as CZT(Malik et al,2005).

 Result feedback. In term of the analysis results, we feedback them to the design model, so we can utilize

the results to modify the error information in software model.

4.1 Modeling the real time software

There are lots of tools supporting the MARTE modeling, such as Papyrus, OpenEmbeDD. Papyrus is an
open source environment which can be integrated into Eclipse, and it targets to provide a user-consumable platform
for editing EMF (Eclipse Modeling Framework) model. Papyrus has a favorable graphical modeling interface to
support diagram editors, and it supports several embedded real time software modeling language and specification,
such as UML2, MARTE, SysML, EAST-ADL.

We download Eclipse modeling tools, and install Papyrus on the platform. So we can use the modeling
elements of MARTE to construct software model on the Eclipse platform. As XMI is used as the definition
specification by EMF, we can export XMI document for MARTE models which are constructed by Eclipse
modeling tools.

The model data of Papyrus is stored in two XML document, *.uml and *.umldi. The *.uml document is
used to store the structure information of model, such as the class name, parameters and operation information. The
*.umldi document is used to store the expression information of model, such as the size of elements, the location and
the font information. As the construction of MARTE model only need the structure information, we focus on the
research of the definition of *.uml document.

The head part of the *.uml document is xml declaration, it consists of the version number, the encoding
type and the description of namespace. The root node of the document is <uml:Model>, all of the model elements
are recorded in its descendant nodes. The format is as below:

<uml:Model xmi:id="_gTnLY" name="model">
All the elements of MARTE model are respectively recorded in the sub-nodes of packagedElement node.

The name of element is stored in the name attribute. The type of element is stored in the xmi:type attribute. The
attribute value of class element is uml:Class. The attribute value of interface element is uml:Interface. The attribute
value of dependency element is uml: Dependency. The attribute value of realization element is uml: Realization.

 Researcher 2021;13(9) http://www.sciencepub.net/researcher RSJ

 71

For the class and the interface, we also need to store their owned information among attributes and
operations. Those information is recorded under class element packagedElement in the form of ownedAttribute and
ownedOperation. The name of attributes or operations is as the name value of nodes. The type of attributes is stored
in the type sub-nodes of the ownedAttribute node, and each parameter of class operations is showed in the
ownedParameter sub-nodes of the ownedOperation node. The type of parameter is also stored in the type sub-nodes
of the parameter nodes. The basic format are
<ownedAttribute xmi:id="_BdFzE" name="Attitude" visibility="public">
<ownedOperation xmi:id="_p43tE" name="ready"/>

XSLT parser would deal with the XMI document in the form of structure tree. So *.xml document just is a
structure tree from the view of XSLT.

Figure 5 shows an example of structure tree of uml:Class type.

Figure 5. The structure tree of uml:Class type

4.2 The Transformation based on XMI and XSLT

There are several documents in our paper, including XMI document of MARTE model, XMI document of
Object-Z model, XML schema document of Object-Z meta model. Now we give the relationships among them in
MDA-based four layers meta model, as showed in

Figure 6. M1 is the model layer, and M2 denotes the meta model layer.

Figure 6. The relationships among models and XMI documents

 Researcher 2021;13(9) http://www.sciencepub.net/researcher RSJ

 72

For the XMI document derived from MARTE model, we need to transform it into XMI document of

Object-Z. In the process, the key is that whether could design a good XSLT Stylesheet. The XSLT Stylesheet is used
to construct the one-to-one mapping relationship between XMI document of MARTE model and XMI document of
Object-Z, and the XMI document of MARTE model is automatically generated by Papyrus. So before designing the
XSLT Stylesheet, we need to define the construction of XMI document of Object-Z in term of Object-Z meta model
at M2 layer. That is, the XML schema document at upper layer can be used to define and verify the XMI document
at lower layer.

Figure 7. The core meta model of Object-Z

Object-Z uses object-oriented paradigm, and its basic concepts are similar to UML.When realizing the
transformation of object-oriented model, Object-Z can reduce the complex compared with non-object-oriented
formal specification(Kim et al,2002), such as Z.

Figure 7 is the structure diagram, and it shows the core component of meta model of Object-Z.

OZModelElement is the topmost meta class, all the type of Object-Z meta model are derive from it. Now we define
the XML schema of Object-Z in term of Object-Z meta model.

Figure 8 is part of XML schema of Object-Z meta model. Through the definition of XML schema
document, we can define the syntax structure of XMI document of Object-Z model, which is used to verify the
syntax validity of transformed XMI document.

 Researcher 2021;13(9) http://www.sciencepub.net/researcher RSJ

 73

<?xml version="1.0" encoding=" UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="classdef ">
 <xs:complexType>
 <xs:sequence>

<xs:element ref="inherit" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="state" minOccurs="0" maxOccurs="1"/>
<xs:element ref="init" minOccurs="0" maxOccurs="1"/>
<xs:element ref="op" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="state">
 <xs:complexType>
 <xs:sequence>

<xs:element ref="decl" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="st" minOccurs="0" maxOccurs="1"/>
<xs:element ref="predicate" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

Figure 8. XML schema document of Object-Z meta model

For the mathematical notations in Object-Z, we can realize them by defining entity in DTD document(Sun

et al,2001). The entity declaration in DTD document is as showed in Figure 9.

<?xml version="1.0" encoding="UTF-8"?>
<!ENTITY delta "Δ">
<!ENTITY integers "ℤ">
<!ENTITY and "∧">

<!ENTITY or "∨">
<!ENTITY forall"∀">

Figure 9. DTD document of Object-Z

 Researcher 2021;13(9) http://www.sciencepub.net/researcher RSJ

 74

In term of the definition of XMI schema document of Object-Z meta model, we will generate the XSLT

Stylesheet and set up the relationship with XMI document of MARTE. In the XSLT Stylesheet, if the type of
packagedElemant element in UML:Model is uml:Class, the name attribute is translated into the class name of
Object-Z. For the sub-elements of packagedElemant element, the transformation rules are as follows:

 The ownedAttribute element is translated into the state schema of Object-Z;

 The init operation in ownedOperation element is translated into the init operation of Object-Z;

 The ownedOperation element is translated into the operation of Object-Z;

 The basic data type of MARTE is translated into the XMI owned data type or simple type;

 The stereotype of MARTE is translated into the complex type of XMI;

 For the generalization connection class and interface of MARTE class, we translate its elements into the

class schema and operation of Object-Z:

⋄The ownedAttribute sub-element is translated into the state schema of Object-Z;
⋄The init operation is translated into the init operation of Object-Z;
⋄The ownedOperation sub-element is translated into the operation of Object-Z.
The structure information of MARTE model built by Papyrus can be stored in the form of XMI document,

and then it can be denoted as a tree structure. The advantages of tree structure are legible layer and high readability.
The XSLT-based transformation aims at the tree structure of document, so it is easy to analyze and extract
transformation rules using XSLT technology. We can design a well-form style sheet for transforming, as showed in

Figure 10.

Figure 10. XSLT Stylesheet

 Researcher 2021;13(9) http://www.sciencepub.net/researcher RSJ

 75

4.3 Analysis of transformed result

The document transformation is to transform MARTE model into an XMI document of Object-Z, so we
can verify the syntax validity of transformed XMI document using XMI schema of Object-Z. The result is a precise
formal model, and its feature is precision.

In addition, the existing open tool CZT can edit and check the standard Z specification and Object-Z
specification, and it can be used to parse, type check and transform the Z and Object-Z specification in the form of
LATEX, Unicode and XML. CZT tool is open source and has high expansibility, and it can be integrated with other
languages or systems. It is feasible to support the Z extension language. In term of the proposed framework, we
transform MARTE model into XMI document which is fit of CZT form by using XSLT Stylesheet, and then analyze
and verify the XMI document by CZT tool. At the end, in term of the verified XMI document, we will modify the
original MARTE model.
5. Case study

We have performed our experiments on TCAS (Traffic Collision Avoidance System), to show how to
generate XMI document from MARTE model, and to generate XMI document of Object-Z schema in term of the
transformation framework proposed in Section 4.
5.1 Software modeling

TCAS is a set of embedded software system in aircraft to avoid mid-air collisions. TCAS II consists of four
sub systems, and they are monitoring system, collision system, display & control system, monitor system. In
accordance with the software engineering method, we firstly model the software system using MARTE. We adopt
RtUnit and PpUnit to denote and model the active objects in embedded software.

RtUnit is a concurrent unit which contains the object and its process schema, and it supports asynchronous
processing of messages to realize the control of concurrent. PpUnit is a protected passive unit, and it specifies
concurrent access policy for shared data. PpUnit can model the protected source in system, and it is owned and
controlled by RtUnit. The Aircraft class is an RtUnit unit, it realizes the AircraftService interface, and depends on
the operations provided by ConflictResolution interface. It shares the data through Signal RtUnit unit. The
relationships of them are as showed as Figure 11.

Figure 11. The MARTE class diagram of Aircraft

 Researcher 2021;13(9) http://www.sciencepub.net/researcher RSJ

 76

There is an Association relationship between the Aircraft RtUnit class and the Signal PpUnit class, which is

model in Papyrus. The part XMI document of the class diagram is specified as follow:
<packagedElement xmi:type="uml:Class" xmi:id="_classsignal" name="Signal">
<packagedElement xmi:type="uml:Class" xmi:id="_classaircraft" name="Aircraft" clientDependency="

_relationRealization _relationUsage _intReal ">
<ownedAttribute xmi:id="_j-C0EB" name="signal" type="_classSignal" isUnique="false"

association="_assocaAS">
<packagedElement xmi:type="uml:Association" xmi:id="_assocaAS" name="A_Aircraft_Signal" >
From the XMI document, it shows that the class name and the relationship name are recorded in the name

attribute. The element type of the Aircraft RtUnit class and the Signal PpUnit class is uml:Class. The element type
of dependence relationship is uml:Association. The Aircraft class shares the information provided by Signal class
through A_Aircraft_Signal association class, so the Signal class becomes an attribute of the Aircraft class that is
realized by _assocaAS association class. Where its value is signal, and its type is _classSignal.

As Papyrus tool supports to derive model diagram in the form of XMI, we can analyze and transform class
diagram in XMI form after building MARTE model.

Figure 12 shows the part of XMI document in Figure 11 class diagram.

Figure 12. XMI document of Model class diagram

5.2 Realizing transformation
In term of the proposed transformation framework, we base on XMI and XSLT to transform XMI

document of MARTE into XMI document of Object-Z schema. The result is showed as Figure 13.

 Researcher 2021;13(9) http://www.sciencepub.net/researcher RSJ

 77

<?xml version="1.0" encoding="UTF-8"?>
<classdef xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="marteOZSchema.xsd">
<name>Aircraft</name>
<inhertit> AircraftService</inhertit>
<state>

<name>signal_modeS</name>:<type>Integer</type>
<name> signal_p</name>:<type>Integer</type>
<name> signal_v</name>:<type>Integer</type>
<name>a</name>:<type>Integer</type>
<name>lastSense</name>:<type>String</type>
<name>lastStrengh</name>:<type>String</type>

……
</state>
<init> </init>
<op>

<type>Boolean</type>
<name>ready</name>
<parameter>

<name> </name>
<type> </type>

</parameter>

……
</op>

</classdef>

Figure 13. Transformed result

After transforming the different XMI
document, we can utilize Object-Z schema to check
out the syntax of the transformed structure, and also
use the existing verification tool to analyze and verify
the XMI document of Object-Z(Derrick et al,2008).
In term of the analysis result, we can feedback it to
design model and modify MARTE model at the
graphical interface. The verification process would
not be discussed in this paper, but the verification
result is very useful for development engineers to
amend the fault of design model at the design stage
of software life cycle.

6. Conclusion

At the different stages of the software life
cycle, the targets of software model are different. At
the design stage, MARTE model is used to informal
communicate among software development

engineers, the advantage is visibility. At the
transformation stage, we use parser and processor to
transform MARTE model into formal model, such as
Objcet-Z. The advantage is precision. At the analysis
stage, we can accurately and formally verify Object-
Z model by verification tool, the advantage is
automaticity. The verification result can be feedback
and be used to guide the software engineers to perfect
the design model.

We incorporate the advantages of MARTE
model with formal model, and propose an integration
formal model which combines Object-Z with PTA.
This method can transform MARTE model into
formal PTA-OZ model, so we can use the verification
tools to analyze and verify the structure semantic and
behavior semantic of the MARTE model at the
design stage. How to realize the transformation is the
focus of our research. Under MDA architecture, we

 Researcher 2021;13(9) http://www.sciencepub.net/researcher RSJ

 78

use XMI document of Object-Z model and XML
schema document of Object-Z meta model to achieve
the executable transformation framework from
MARTE model to PTA-OZ model. So at the design
stage, we can utilize different model to show and
provide variable information for software
development engineers.

Acknowledgements:

This work was supported by Funding of
Jiangsu Innovation Program for Graduate Education
and the Fundamental Re-search Funds for the Central
Universities under Grant No.CXLX12_0161.

Corresponding Author:
Haiyang Xu
PO BOX 296
Nanjing University of Aeronautics and Astronautics
No.29 Yudao Street, Qinhuai District,
Nanjing City 210016
Jiangsu Province, China
E-mail: xhy@nuaa.edu.cn

References
[1]. Mallet, F., André, C. On the semantics of

UML/MARTE clock constraints. IEEE
International Symposium on
Object/Component/Service-Oriented Real-Time
Distributed Computing. 2009; 305-312.

[2]. André, C., Mallet, F. Specification and
verification of time requirements with CCSL
and Esterel. ACM Sigplan Notices. 2009;167-
176.

[3]. Vidal, J., de Lamotte, F., Gogniat, G. et al.
A co-design approach for embedded system
modeling and code generation with UML and
MARTE. 2009 Design, Automation & Test in
Europe Conference & Exhibition. 2009;226-
231.

[4]. Lecomte, S., Guillouard, S., Moy, C. et al. A
co-design methodology based on model driven
architecture for real time embedded systems.
Mathematical and Computer Modelling. 2011;
53(3): 471-484.

[5]. Yu, H., Gamatié, A., Rutten, É. et al. Safe
design of high-performance embedded systems

in an MDE framework. Innovations in Systems
and Software Engineering. 2008; 4(3): 215-222.

[6]. Sun, J., Dong, J. S., Liu, J. et al. Object-Z
web environment and projections to UML.
Proceedings of the 10th international
conference on World Wide Web. 2001; 725-
734.

[7]. Khan, S. A., Hashmi, A. A., Alhumaidan, F.
et al. Semantic Web Specification using Z-
Notation. Life Science Journal. 2012; 9(4): 994-
1000.

[8]. Grose, T. J., Doney, G. C., Brodsky, S. A.
Mastering Xmi: Java Programming with Xmi,
XML and UML. John Wiley and Sons; 2002.

[9]. Faugère, M., Bourbeau, T., Simone, R. D. et
al. MARTE Also an UML Profile for Modeling
AADL Applications. ICECCS. 2007; 359-364.

[10]. Quadri, I. R., Gamatié, A., Boulet, P. et al.
Expressing embedded systems configurations at
high abstraction levels with UML MARTE
profile: Advantages, limitations and
alternatives. Journal of Systems Architecture.
2012; 58(5): 178-194.

[11]. Zhang, t., JOUAULT, F., ATTIOGBÉ, C. et
al. MDE-Based Mode Transformation:From
MARTE model to FIACRE Model. Journal of
Software. 2009; 20(2): 214-233.

[12]. Mӧller, M., Olderog, E.-R., Rasch, H. et al.
Integrating a formal method into a software
engineering process with UML and Java.
Formal Aspects of Computing. 2008; 20(2):
161-204.

[13]. Malik, P., Utting, M. CZT: A framework for
Z tools. Formal Specification and Development
in Z and B. 2005; 65-84.

[14]. Kim, S.-K., Carrington, D. A formal
metamodeling approach to a transformation
between the UML state machine and object-Z.
ICFEM 2002, LNCS 2495. 2002;548-560.

[15]. Derrick, J., North, S., Simons, A. J. Z2SAL-
building a model checker for Z. Abstract State
Machines, B and Z. 2008;280-293.

2/25/2021

