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Abstract: In this paper, the boundary layer stagnation-point slip flow and heat transfer towards a shrinking/stretching cylinder over a permeable surface is considered. The governing equations are first transformed into a system of non-dimensional equations via the non-dimensional variables, and then into self-similar ordinary differential equations before they are solved numerically using the shooting method. Numerical results are obtained for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the velocity slip parameter ((), the thermal slip parameter ((), the curvature parameter (() and the velocity ratio parameter (c/a). The physical quantities of interest are the skin friction coefficient and the local Nusselt number measured by
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, respectively.  The numerical results show that the velocity slip parameter (  increases the heat transfer rate at the surface, while the thermal slip parameter ( decreases it. On the other hand, increasing the velocity slip parameter (  causes the decrease in the flow velocity. Further, it is found that the solutions for a shrinking cylinder (c/a < 0) are non-unique with dual solutions, which is different from a stretching cylinder (c/a > 0) case. Finally, it is also found that the values of 
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increase as the curvature parameter (  increases.
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1. Introduction

The problem of flow and heat transfer induced by continuous shrinking or stretching surfaces has received considerable attention in recent years because it is an important type of flow occurring in many engineering disciplines. The stagnation point flow problems have been extensively studied by several authors. The problem of flow due to a shrinking or stretching sheet has been later extended to many flow situations.  Crane  (1970) was the first studied the steady boundary layer flow of a viscous fluid due to a linearly stretching surface. Later Chiam (1994) extended the works of Crane (1970) to stagnation-point flow over a stretching sheet. Wang (2008) first investigated the stagnation-point flow towards a shrinking sheet for both two-dimensional and axiymmetric cases. He found that problem have the dual solutions as well as unique solution for a specific values of the ratio of shrinking.  

The problem of unsteady stagnation-point flow of a viscous and incompressible fluid by considering both the stretching and shrinking sheet situations have been investigated by Fan et al. (2010).  On the other hand, Bachok et al (2010) discussed the effect of melting on boundary layer stagnation-point flow towards a stretching or shrinking sheet. Ahmad et al. (2011) investigated the behaviour of the steady boundary layer flow and heat transfer of a micropolar fluid near the stagnation point on a stretching vertical surface with prescribed skin friction. Lok and Pop (2011) studied the steady axisymmetric stagnation point flow of a viscous and incompressible fluid over a shrinking circular cylinder with mass transfer (suction). Bhattacharyya et al. (2011) analyzed the effects of partial slip on steady boundary layer stagnation-point flow of an incompressible fluid and heat transfer towards a shrinking sheet. This investigation explores the conditions of the non-existence, existence, uniqueness and duality of the solutions of self-similar equations numerically. They also studied the same case but under the condition of unsteady-state towards a stretching. Stagnation-point flow and heat transfer over an exponentially shrinking sheet was analyzed by Bhattacharyya and Vajravelu (2012). They obtained dual solutions for the velocity and the temperature fields and also they observed that their boundary layers are thinner for the first solution. Therefore, the present investigation deals with the effects of partial slip on the boundary layer stagnation-point flow and heat transfer towards a shrinking/stretching cylinder over a permeable surface. 
2. Problem formulation

Consider the steady stagnation-point flow towards a horizontal linearly stretching/shrinking cylinder with radius 
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 placed in an incompressible viscous fluid of constant temperature 
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. Using boundary layer approximation, the equations of motion and temperature distribution may be written in usual notations as 
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where 
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 and 
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 are coordinates measured along the surface of the cylinder and in the radial direction, respectively, with 
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 being the corresponding velocity components and 
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 is the straining velocity of the stagnation-point flow. Further, 
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 is the temperature in the boundary layer, 
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 is the kinematic viscosity coefficient and 
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 is the thermal diffusivity. The appropriate boundary conditions for the velocity components with partial slip condition at the wall and for the temperature are given by
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where 
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 are the shrinking/stretching rate (of the surface) and the straining rate parameters, respectively, with 
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 is the velocity slip factor, 
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, which identically satisfies Eq. (1). The boundary conditions in (4) and (5) for the velocity components reduce to
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Next, we introduce the transformation as follows:
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where 
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 is the similarity variable and is defined as 
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. Using (7) we obtain the following self-similar equations
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subject to the boundary conditions (6) and (5) which become     
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where 
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 is the curvature parameter and Pr is the Prandtl number defined respectively as
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and fw is the suction/injection parameter, where fw>0 is the constant suction parameter and fw<0 is the constant injection parameter, 
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 is the thermal slip parameter. The main physical quantities of interest are the value of 
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3. Results and Discussion 

Equations (8) and (9) with the boundary conditions (10) are solved numerically using the shooting method. Table 1 shows the variations of 
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Table 1. Variations of 
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Figures 1 and 2 show the variations of 
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Figure 1. Variations of 
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Figure 2. Variations of 
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Figures 3 and 4 represent the variations of 
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Figure 5 shows the variations of 
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Figure 3. Variations of 
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Figure 4. Variations of 
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Figure 5. Variations of 
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Figure 6. Variations of 
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Figure 7. Variations of 
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Figure 8. Variations of 
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Figures 9 and 10 represent the variations of 
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Figure 9. Variations of 
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Figure 10.  Variations of 
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Figure 11. Velocity profiles 
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 Figure 12. Temperature profiles 
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Figure 13. Velocity profiles 
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4. Conclusion 

The study of boundary layer stagnation-point slip flow and heat transfer towards a shrinking/stretching cylinder over a permeable surface has been investigated numerically using the shooting method. Comparisons of the present results with those of Bhattacharyya et al. (2011) are in excellent agreement. The velocity slip parameter (
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Figure 14. Temperature profiles 
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