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Abstract: Aircraft design is a highly nonlinear problem and inherently multidisciplinary activity that involves 
thousands of design variables and different models and tools for various aspects of design.  A spreadsheet based 
genetic algorithm (GA) approach is presented to optimize the preliminary design of an aircraft.  A domain 
independent general purpose genetic algorithm is proposed to implement the optimization routine.  Objective 
function used for the design evaluation is the Breguet.  A total of sixteen design variables are considered in the 
optimization process.  It has also been demonstrated that the proposed approach can be adapted to any objective 
function without changing the optimization routine.  The model is applicable to commercial airliner as well as a 
multirole jet fighter.  The proposed model has been validated against known configurations of various aircraft.  
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1. Introduction 

Aircraft design is a tedious and prolonged 
exercise involving complex interdependence of a 
wide range of variables. The optimized values of 
these variables or their best possible combination 
only yield an effective, reliable and cost-effective 
aeroplane.  The most efficient, reliable, fastest, 
lightest and cost effective aeroplane can be termed as 
an ideal aircraft, however, aircraft design is a 
compromise of different aspects because maximizing 
one capability would render another to an undesired 
degree. Therefore, a healthy compromise between all 
the desired qualities is the ultimate goal of a designer.  
The constraints dictate the values of the design 
variables so their ranges have to be kept in the 
realistic domain. 

Aircraft design is considered to be a separate 
discipline of aeronautical engineering which is 
different from the other analytical disciplines such as 
propulsion, aerodynamics, controls, and structures. 
An aircraft designer should be well versed in these 
and many other specialties. Design is not only the 
actual layout, but also analytical processes that are 
used to determine what is to be designed and how the 
design should be modified to meet the requirements. 

This paper attempts to use genetic 
algorithms (GA) to optimize preliminary aircraft 
design parameters to maximize the range of the 
aircraft. The proposed approach has been 
implemented in a spreadsheet environment using 
proprietary software as an add-in to the Microsoft 
Excel™ software. 
 
2. Design Process 

People involved in design never seem to 
agree where the design process begins. The designer 
thinks it starts with a new airplane concept. The 
sizing specialist knows that nothing can begin until 
an initial estimate of the weight is made. The 
customers, whether civilian or military, feel that the 
design begins with their requirements which are set 
by prior design trade studies. Thus, the concepts are 
developed to meet requirements. So is the case of 
other two parameters of design wheel. There are three 
major phases of aircraft design (Raymer, 2006) are: 
conceptual design followed by preliminary design 
then detailed design.  The three major phases along 
with requirement of each phase are depicted in Figure 
1. 
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Figure 1. Aircraft design Phases 
 

 
The conceptual design of the aircraft starts 

with the study of many feasible configurations in 
some detail, with the aim of achieving the mission 
requirements of the new aircraft; considering certain 
safety and operational criteria (Martinez & 
Hernandez, 1999 and Jayabalan et al., 2005). 
Conceptual design is subjected to an optimization 
process called the preliminary design. As a result one 
concept is finally chosen as the best compromise for 
all requirements and specifications. Preliminary 
design process, also called ‘frozen configuration’, 
goes through somewhat complete aerodynamic, flight 
mechanic and structural studies. 

Fielding (1999) described that the most 
important stage of the aircraft design process is to 
define the correct set of requirements for future 
design; these requirements are called design 
specifications. These inputs require inputs from a 

variety of discipline and are dependent upon various 
design / airworthiness standards. The design process 
evolves through various information which include; 
airframe dimensions and shapes, performance 
parameters, static and dynamic loads, quality 
standards, certification criteria, and cost constraints, 
etc. (Gundlach, 2004). The various variable and 
constraints in the design process are interdependent 
thus for efficient design workflow the relations ship 
between various success of information must be 
known and the feedback loops are to be built into the 
design process (Sobester and Keane, 2006).  
Jayabalan et al. (2005) stated that aircraft design 
process includes finding an aerofoil shape by testing, 
do a sizing and performance optimization and 
integrating it together with the other parts of the 
aircraft, i.e. payloads, propulsion systems, controls 
etc. 
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3. Related Research 
Bramlette and Bonehard (1991) discuss 

optimizing aircraft design when the task is posed as 
that of optimizing a list of parameters. They used real 
number representation for Genetic Algorithms and 
generated a large number of initial population 
members and worked only with the best ones. 

Kroo et al. (1994) consider large-scale 
aeronautical systems and describe improved methods 
for multidisciplinary design and optimization of 
preliminary design. They evaluate a variety of 
implementation strategies with the development of 
efficient decomposition and optimization tools based 
on genetic algorithms. 

Rasheed et al. (1997) devise a genetic 
algorithm for continuous design space search and 
define new genetic operators corresponding to the 
properties and structures of the engineering design 
domains.  Finally the GA is applied to design of 
conceptual supersonic aircraft. Bos (1998) uses a 
procedure based on a hybrid genetic / gradient-guided 
optimization algorithm for the design of a second-
generation supersonic transport aircraft.  Obayashi 
(1998) examines the evolutionary algorithm for 
optimization of aircraft design and apply it to 
multidisciplinary design optimization (MDO) of 
aircraft planform shapes. 

Daberkow and Marvis (1998) apply a feed-
forward neural network to conceptual and 
preliminary aircraft design.  They demonstrate that 
neural networks prove to be a more suitable 
alternative with improved performance.  Parmee and 
Watson (1999) use a multi-objective optimisation 
approach that utilizes a genetic algorithm (GA) for 
the preliminary design of airframes.  The use of 
parallel GA’s produces a linear decrease in running 
time for the method bringing the whole process 
within an acceptable time frame, the results suggest 
that quicker less detailed runs can easily be achieved 
by using smaller population sizes. 

Jun and Song (1999) also apply Genetic 
algorithm combined with fuzzy mathematics for the 
conceptual / preliminary aircraft design. Ng and Leng 
(2002) apply GAs to conceptual design of a micro-air 
vehicle.  The chose six design parameters namely: 
angle of attack, main wing twist angle, winglet span, 
main wing chord length, main wing taper ratio and 
winglet taper ratio in their study.  They compare the 
performance of using genetic algorithms with well-
established non-linear optimization method based on 
sequential quadratic programming and demonstrate 
that as compared to other methods, GAs are efficient 
in escaping from escape from local minima and move 
towards the global optimum solution. 

Ali and Behdinan (2002) apply GA for the 
conceptual design of an aircraft.  Authors 

demonstrate that GAs can provide a reasonable 
aircraft design in a short amount of time compared 
with the traditional design techniques.  Finally they 
compare the GA optimized aircraft shape and 
configuration with that of the existing aircraft.  
Results indicated that the GA is a powerful multi-
disciplinary optimization and search tool, that is 
capable of managing and reforming numerous 
aircraft design parameters, to arrive at aircraft 
conceptual designs that are both efficient and cost 
effective. 

Raymer (2002) applies multidisciplinary 
optimization methods for Aircraft Conceptual Design 
process.  The author incorporates aircraft conceptual 
design analysis codes into various optimization 
methods including Orthogonal Steepest Descent (full-
factorial stepping search), Monte Carlo, a mutation-
based Evolutionary Algorithm, and three variants of 
the Genetic Algorithm.  These methods are then 
compared for four aircraft concepts: a flying wing 
UAV, a commercial airliner, an advanced multirole 
export fighter and a general aviation twin of novel 
asymmetric configuration. 

Roth and Crossley (2003) employ genetic 
algorithms in the aircraft design to determine which 
of the design variables should be changed and by 
what magnitude. They only consider design variables 
associated with the aircraft wing. Bandte and 
Malinchik (2004) employ an interactive evolutionary 
process for an aircraft design. The authors 
demonstrate that aircraft design solutions presented 
achieve better results than a previously published 
solution.  Kroo (2004) also describes the use of 
evolutionary design methods in aeronautics. 
Ghorbany and Malek (2005) use genetic algorithms 
aircraft conceptual design for a short take-off and 
landing aircraft.  They use minimization of life cycle 
cost as the objective function. 

Vankan et al. (2006) present a response 
surface optimization approach for aircraft design that 
is implemented in MATLAB.  Authors conclude that 
a key benefit of this approach is that large numbers of 
interesting design points can be found relatively 
quickly with less computationally expensive 
analyses, whilst maintaining a reasonable accuracy. 
Amadori et al. (2008) propose a framework for 
aircraft conceptual design which is a 
multidisciplinary optimization tool based on genetic 
algorithms for defining and refining aircraft designs, 
with respect to its aerodynamics, performance, 
weight, stability and control. 

Marta (2008) describes application of 
genetic algorithms to preliminary aircraft design. The 
author studies the effects of varying different GA 
parameters on the algorithm efficiency.  Alonso et al. 
(2009) describe set of procedures employing 
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simulation and neural networks for aircraft design 
optimization.  Zhiping and Yuxing (2010) study 
Parametric Optimization Design of Aircraft and 
propose an improved parallel multi-objective tabu 
search (PMOTS) algorithm.  They also present a 
hybrid parallel multi-objective tabu search 
(HPMOTS) algorithm which combines the PMOTS 
algorithm with the non-dominated sorting-based 
multi-objective genetic algorithm (NSGA).  The 
computational analyses indicate that HPMOTS is far 
more superior to PMOTS. 

 
 

4. Problem Statement 
The problem statement for preliminary 

aircraft design would be: determine the values of 
restricted design variables such that the range of the 
aircraft R, as given by Breguet range equation is 
maximized.  The Breguet range equation is given by 
(Kroo, 2003): 
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where 

V =  Cruise velocity 
L =  Airplane lift 
SFC =  Specific fuel consumption at 

    cruise speed and altitude 
D =  Airplane drag 
Wi =  Initial airplane weight 
Wf =  Final airplane weight 

 
 

The objective is to maximize the range of 
the aircraft.  The right-hand side terms in equation 1 
can be estimated by combining several estimates 
described in Kroo (2003), using the design variables 
whose values are given in Table 1.   

Two different aircraft types i.e., a 
commercial airliner and a multirole jet fighter, are 
considered in the paper.  Hence, two different 
models, one for each type is built for optimization. 
 
 

5. Genetic Algorithms 
Genetic Algorithms (GAs) belong to a class 

of search methods that are especially suited for 
solving complex optimization problems. GAs were 
first introduced by Holland (1975).  They transpose 
the notions of natural evolution to the world of 
computers, and imitate natural evolution.  A GA 
functions by generating a large number of possible 
solutions to a given problem.  Each solution is then 
evaluated against a “fitness value” to determine the 
parents. These solutions after crossover and mutation 
breed new solutions. Fitter solutions are more likely 
to reproduce as compared to less "fit".  In successive 
iterations, best solutions (parents) are allowed to 
produce new solutions (children).  The worst 
members of the population die off to make way for 
the fitter individuals.  A detailed introduction to GA’s 
is given in Goldberg (1989).  GAs have successfully 
been applied in the aircraft design (Rasheed et al. 
1997, Bos 1998, Obayashi 1998, Parmee & Watson 
1999, Jun & Song 1999, Ng & Leng 2002, Bandte & 
Malinchik 2004, Kroo 2004, Ghorbany Malek 2005, 
Marta 2008). 

 
6. GA Implementation 

In the present study GA is applied to the 
preliminary aircraft design in a spreadsheet 
environment.  The model was made on the basis of 
the conceptual design by Raymer (2006). Two 
models were made essentially for a transport airliner 
and an airforce multi-role jet fighter. The models 
were developed separately according to the 
respective equations of both types. The model 
follows a methodological approach where a segment 
of the flight path or the mission profile is taken i.e. 
the cruise segment. For this segment the range was 
taken as the objective function to be the basic entity 
to be optimized. All the relationships were built to 
compute the equation for range, the Breguet 
Equation. 

For genetic algorithm implementation, we 
employ a commercially available GA namely 
Evolver™ (1998), that functions as an add-in to the 
spreadsheet environment i.e., Microsoft Excel™.  
The aircraft design optimization model is developed 
using spreadsheet’s built in functions.  Figure 2 
shows the spreadsheet-GA integration. 
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Figure 2 Spreadsheet-GA Integration 
 
 
 

The fitness/objective function value is 
passed on to the GA component as a single cell value 
for the evaluation of the design. 

Two models were made essentially for a 
transport airliner and a multirole jet fighter.  The 
models were developed separately according to the 
respective equations of both types.  The model 
follows a methodological approach where a segment 
of the flight path or the mission profile is taken i.e. 
the cruise segment.  For this segment as stated earlier, 
the range was taken as the objective function to be 

the basic entity to be optimized.  All the relationships 
were built to compute the equation for range, the 
Breguet Equation. 

Keeping in view the historical trends, a total 
of 16 and 14 design variables are used to develop the 
models for commercial airliner and a multirole jet 
fighter respectively.  The design variables for the 
commercial airliner and multirole jet fighter along 
with the range of each are given in Table 1 and 2 
respectively. 
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Table 1. Design Variables for Commercial Airliner 

S No Variable Name 
Admissible Values 

Min Max 

1 Takeoff Weight 150000 lb 180000 lb 

2 Wing Span 80 ft 125 ft 

3 HT Span 30 ft 70 ft 

4 VT Span 20 ft 50 ft 

5 Mach No 0.5 0.8 

6 Seating Capacity 150 195 

7 Aspect Ratio 7 10 

8 SFC 0.0002/hr 0.00027/hr 

9 Altitude 25000 ft 37000 ft 

10 Fuselage Length 110 ft 150 ft 

11 Fuselage Dia 12 ft 18 ft 

12 Wing Sweep 25º 30º 

13 Angle of Attack 3° 5° 

14 Ultimate Load Factor 2 4 

15 T/C Wing 0.14 0.2 

16 Taper Ratio Wing 0.4 0.5 

 
Table 2. Variables for Multirole Jet Fighter 

S No Variable Name 
Admissible Values 

Min Max 

1 Takeoff Weight 25000 lb 33000 lb 

2 Wing Span 25 ft 35 ft 

3 VT Span 6 ft 9 ft 

4 Mach No 0.5 0.8 

5 Aspect Ratio 1.6 2.2 

6 SFC 0.00023/hr 0.00027/hr 

7 Altitude 25000 ft 37000 ft 

8 Fuselage Length 40 ft 60 ft 

9 Fuselage Dia 4 ft 10ft 

10 Angle of Attack 3° 5° 

11 Ultimate Load Factor 6 9 

12 T/C Wing 0.04 0.06 

13 T/C VT 0.05 0.06 

14 Max Mach 1.8 2.2 

 
6.1 Chromosome Representation 

Direct representation is used for the 
representation of the chromosome where each gene 
represents a particular design variable.  Thus for a 
commercial airliner the chromosome length would be 
of sixteen genes, which is actually equal to the 
number of design variables.  Similarly, for multi-role 
jet fighter the chromosome length would be of 
fourteen genes.  Thus for each of the gene a number 
is generated between the defined range to find the 

best possible combination of values that gives the 
maximum value for the objective function given in 
equation 1. 

 
6.2. Reproduction / Selection 

In this research steady state reproduction as 
reported in GENITOR GA (1988) is used, thus in 
each iteration only one worst performing organism is 
replaced instead of replacing the whole generation.  
In case of a steady state reproduction, all the genes 
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are not lost, as is the case in generational replacement 
where after replacement, many of the best individuals 
may not produce at all and their genes may be lost.  
Steady-state reproduction is a better model of what 
happens in longer lived species in nature.  This 
allows parents to nurture and teach their offspring, 
but also gives rise to competition between them.  The 
value of the objective function for a particular 
chromosome is a measure of its fitness. 

 
6.3. Crossover Operator 

Uniform crossover is performed by the GA 
routine.  This means that instead of chopping the list 
of variables in a given scenario at some point and 
dealing with each of the two blocks (called “single-
point” or “double-point” crossover), two groups are 
formed by randomly selecting items to be in one 
group or another.  Traditional x-point crossovers may 
bias the search with the irrelevant position of the 
variables, whereas the uniform crossover method is 
considered better at preserving schema, and can 
generate any schema from the two parents.  In 
uniform crossover, instead of chopping the list of 
variables in a given scenario at some point and 
dealing with each of the two blocks, two groups are 
formed by randomly selecting items to be in one 
group or another. Figure 3 shows uniform crossover. 
 

P1 1 1 0 0 1 0 1 0 

         

P2 0 0 1 0 0 1 1 1 

         

Mask 1 0 0 1 0 1 1 0 

         

Child 1 0 1 0 0 0 1 1 

Figure 3. Uniform crossover 
 

In uniform crossover operator, mixing ratio 
or crossover rate decides which parent will contribute 
each of the gene values in the offspring chromosome. 
This allows the parent chromosomes to be mixed at 
the gene level rather than the segment level. 

Consider the two parents in Fig. 3 which 
have been selected for crossover. Parent P1 has been 
colored green while parent P2 yellow. A random 
mask is generated corresponding to the crossover 
rate. If the crossover rate is 0.5, approximately half of 
the genes in the offspring will come from P1 and the 
other half will come from P2.  Below the second 
parent is the random mask generated corresponding 
to the crossover rate. The child is produced by taking 
bit from P1 if the corresponding mask bit is 1 or the 

bit from P2 if the corresponding bit is 0.  The color of 
the child chromosome represents the mixing of genes 
if the crossover rate is 0.5. 

 
6.4. Mutation operator 

The purpose of the mutation is to ensure that 
diversity is maintained in the population. It gives 
random movement about the search space, thus 
preventing the GA becoming trapped in “blind 
corners” or “local optima” during the search.  The 
GA in this research performs mutation by looking at 
each variable individually. A random number 
between 0 and 1 is generated for each of the variables 
in the organism, and if a variable gets a number that 
is less than or equal to the mutation rate (for example, 
0.06), then that variable is mutated.  The amount and 
nature of the mutation is automatically determined by 
a proprietary algorithm.  Mutating a variable involves 
replacing it with a randomly generated value (within 
its valid min-max range). 

 
7. Computational Results 

The simulations have been run on a Dual 
Core 2.1 GHz computer having 1 GB RAM.  For 
each of the run, the following parameters have been 
used: population size = 65, crossover rate = 0.65, 
mutation rate = 0.01, and stopping criteria = 80,000 
trials, which corresponds to approximately 1 min on a 
Dual Core 2.1 GHz computer having 1 GB RAM. 

The initial model was run with restricted 
variables.  In the initial model, only eight variables 
namely: take-off Weight (Wo), wing Span (b), 
horizontal tail span (bht), vertical tail span (bvt), 
Mach no (M), altitude (h), aspect ratio (AR) and 
seating capacity (n) were considered for optimization. 
The model was verified against known configurations 
of various existing commercial airliners.  As stated 
earlier range has been used as an objective function.  
Table 3 gives the value of range and %age error for 
existing commercial airliners vis-à-vis the range 
calculated from the proposed model. 

The actual range value and that calculated 
from the proposed model are quite close.  The 
accuracy would increase as the number of design 
variables is increased as some of the values in the 
model have been assumed to be constants for a 
particular type of an aircraft. 

In the second phase the model was revised 
to include additional variables, thus increasing the 
number of variable to 16.  The additional variables 
were: fuselage length, fuselage diameter, specific fuel 
consumption, wing sweep, angle of attack (AOA), 
ultimate load factor, wing thickness to chord ratio 
and wing taper ratio.  Table 4 gives the range and 
%age error for the same aircraft as mentioned in 
Table 3. 
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It is evident from Table 3 and 4 that except 
for Boeing 747-100, increasing the number of 
variables increases the accuracy of the model. 

After validation of the model, the 
simulations were run to find the optimized values of 
design variables.  The optimized values found after 
one run for the variables are given in Table 5.  The 
corresponding value of range of the aircraft was 2876 
nm. 

Table 6 shows the average results after 30 
runs.  The average value of range after 30 runs was 
2878 nm.  Similar exercise was carried out for a 
multirole jet fighter.  Optimized values for the 
variables after one and 30 runs are given in Table 7 
and 8 respectively. 

The range calculated for a fighter aircraft 
after one run was 817 nm, while the average range 
after 30 runs was 821.7 nm. 

 
 
 

Table 3. Results of verification – Initial model 

S. No Aircraft Actual Range (Nm) Model Calculated Range (Nm) %age Error 

1 Airbus A318-100 3250 3059 6% 

2 Boeing 747-100 5300 5170 4% 

3 DC 8-32 4116 3630 12% 

4 DC 8-63 CF 1913 1695 11% 

5 Boeing 737-700 1585 1681 8% 

6 Airbus A320-200 3000 2878 4% 

 
 

Table 4. Results of verification – Final model 

S. No Aircraft Actual Range (Nm) Model Calculated Range (Nm) %age Error 

1 Airbus A318-100 3250 3059 6% 

2 Boeing 747-100 5300 5170 4% 

3 DC 8-32 4116 3630 12% 

4 DC 8-63 CF 1913 1695 11% 

5 Boeing 737-700 1585 1681 8% 

6 Airbus A320-200 3000 2878 4% 

 
 

Table 5. Values of variables for a commercial airliner found after first run 

S. No Optimized Variable Value Obtained S. No Optimized Variable Value Obtained 

1 Take-off Weight 164,179 lb 9 Fuselage Length 118 ft 

2 Wing Span 122 ft 10 Fuselage Diameter 15 ft 

3 Ht Span 53 ft 11 Wing Sweep 25° 

4 Vt Span 20 ft 12 SFC 0.00024 /hr 

5 Mach  0.79 13 Ultimate Load 3.5 

6 Altitude 36830 ft 14 AoA 4° 

7 Aspect Ratio 10 15 Wing T/C  0.14 

8 Seats 195 16 Taper Ratio 0.45 
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Table 6. Values of variables for a commercial airliner found after 30 runs 
S. No Optimized Variable Value Obtained S. No Optimized Variable Value Obtained 

1 Take-off Weight 164,109 lb 9 Fuselage Length 120 ft 
2 Wing Span 124 ft 10 Fuselage Diameter 15 ft 
3 Ht Span 51 ft 11 Wing Sweep 25° 
4 Vt Span 20 ft 12 SFC 0.00023/hr 
5 Mach  0.79 13 Ultimate Load 3.5 
6 Altitude 36840 ft 14 AoA 4° 
7 Aspect Ratio 10 15 Wing T/C  0.14 
8 Seats 195 16 Taper Ratio 0.45 

 
 
 

Table 7. Values of variables for a multirole jet fighter found after first run 
S. No Optimized Variable Value Obtained S. No Optimized Variable Value Obtained 

1 Take-off Weight 29,046 lb 8 Fuselage Length 49 ft 
2 Wing Span 27.3 ft 9 Fuselage Diameter 7 ft 
3 Max Mach 2.2 10 Wing T/C 0.05 
4 VT Span 6.2 ft 11 SFC 0.00024 /hr 
5 Mach  0.80 12 Ultimate Load 7 
6 Altitude 36870 ft 13 AoA 3° 
7 Aspect Ratio 1.9 14 VT T/C 0.04 

 
 
 

Table 8. Values of variables for a multirole jet fighter found after 30 runs 
S. No Optimized Variable Value Obtained S. No Optimized Variable Value Obtained 

1 Take-off Weight 29,024 lb 8 Fuselage Length 50 ft 
2 Wing Span 27.1 ft 9 Fuselage Diameter 7 ft 
3 Max Mach 2.2 10 Wing T/C 0.05 
4 VT Span 6.1 ft 11 SFC 0.00025 /hr 
5 Mach  0.80 12 Ultimate Load 7 
6 Altitude 36930 ft 13 AoA 3° 
7 Aspect Ratio 1.8 14 VT T/C 0.04 

 
 
 
8. Comparison of Results 

The optimized values found by the model were compared with different available configurations. The 
closest configuration of a functional aircrafts to the values obtained by the proposed was Airbus A320-200 for the 
commercial airliner and Mirage 2000 for the multirole jet fighter.  Table 9 and Table 10 give the comparison of 
different variables with Airbus A320-200 and Mirage 2000 respectively. 
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Table 9. Comparison with Airbus A320-200 

S No Variable Name Calculated Values Airbus A320-200 

1 Take-off Weight 164109 lb 170000 lb 

2 Wing Span 124.7 ft 111 ft 

3 HT Span 50.2 ft 57 ft 

4 VT Span 20.03 ft 22 ft 

5 Mach No 0.79 0.8 

6 Seating Capacity 195 180 

7 Aspect Ratio 10 9.8 

8 SFC 0.00023 /hr 0.00024 /hr 

9 Altitude 36840 ft 37000 ft 

10 Fuselage Length 120 ft 123 ft 

11 Fuselage Diameter 15 ft 13 ft 

12 Wing Sweep 25º 25º 

 Range 2878 nm 3000 nm 

 
 

Table 10. Comparison for Mirage 2000 

S No Variable Name Calculated Values Mirage 2000 
1 Take-off Weight 29024 lb 30420 lb 
2 Wing Span 27.13 ft 29 ft 
3 VT Span 6.1 ft 7 ft 
4 Mach No 0.79 0.8 
5 Aspect Ratio 1.8 1.9 
6 SFC 0.00025/hr 0.00025/hr 
7 Fuselage Length 50 ft 47 ft 
8 Fuselage Diameter 7 ft 7.6 ft 
9 Max Mach 2.2 2.2 
 Range 821.7 Nm 837 Nm  

 
 
 
9. Conclusions 

This paper has attempted to use GAs for 
optimizing the aircraft range for preliminary aircraft 
design for a commercial airliner and a multirole jet 
fighter. In preliminary aircraft design problem we 
define only the major aircraft characteristics.  After this 
we move to the detailed aircraft design.   

Results in the current research indicate that by 
increasing the number of variables, we can increase the 
accuracy of the model.  The approach has demonstrated 
that it is very easy to customize the solution for any 
objective function without disturbing the logic of the 
GA routine, thus making it a general purpose solution 
approach. 

Even with small number of design variables, 
the results produced in this research were very close to 
the already available configurations of aircraft. The 
spreadsheet-GA implementation has been found to be 
easy to implement and customizable to any condition 

without changing the GA routine, which makes it a 
domain-independent approach. Furthermore, 
spreadsheet environment also enables carrying out of 
what-if analysis. The approach is not a customization 
of the GA logic rather it only modifies the model in 
spreadsheet without changing the actual GA routine. 
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