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Abstract: In practice, the most important performance parameters for a music information retrieval (MIR) service 
are the robustness of the fingerprint in real noise environments and recognition accuracy when the obtained query 
clips are matched with the an entry in the database. To satisfy these conditions, we propose the conjoined fingerprint 
algorithm for use in a massive MIR service. The conjoined fingerprint scheme is an inter- and intrahashing 
algorithm for producing a robust fingerprint scheme in real noise environments. Because the interhash and intrahash 
are masked in the predominant pitch estimation, a compact fingerprint can be produced with their relationship. The 
experimental performance comparison results show that our algorithm is superior to the existing algorithms, namely 
the sub-mask and Philips algorithms, in real noise environments. 
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1. Introduction 

With the recent rapid development of mobile 
devices, there has been a great deal of interest in 
content-based music information retrieval (MIR) 
services, which search for music that is playing over 
public loudspeakers in coffee shops, shopping malls, 
off-street venues, and so on. Music retrieval 
applications, such as Shazam, SoundHound, and 
GraceNote, are now offering services for iPhones, 
iPads, and other mobile devices. In real 
environments, however, such music is corrupted by 
background noise, i.e., people’s voices or machine 
sounds. An MIR service must therefore have two key 
properties: accuracy and robustness (P. Cano et al, 
2005).  Accuracy refers to the number of the correct, 
missed, and wrong identifications. Robustness is the 
ability to make accurate identifications even if there 
is distortion or compression between signal 
conversions. Most MIR services are based upon 
audio fingerprinting schemes, and the Philips scheme 
proposed by Haitsma has proven to be the most 
robust and accurate of these schemes. For a more 
robust fingerprinting system in real noise 
environments (Haitsma et al, 2002), Mansoo 
proposed a frequency-temporary filtering method 
(Mansoo et al, 2006). In practice, however, this 
method still needs further improvement in order to be 
used in real noise environments. To this end, Wooram 
proposed a sub-fingerprint masking method for 
creating a robust fingerprint scheme in real noise 

environments (Wooram et al, 2010). This algorithm is 
very robust in real-noise environments, but uses only 
5-bit hash values for its sub-fingerprint, using a mask 
generated by predominant pitch estimation. Thus, this 
scheme is more appropriate for a small-scale MIR 
service than for a massive MIR service. In this paper, 
we propose the new conjoined fingerprint scheme, 
which is based on an inter- and intrahashing 
algorithm that improves the robustness of the audio 
fingerprinting system in real noise environments, and 
can also be used in a massive MIR service.  

 
2. Related works  
2.1 Philips Hashing Algorithm  

Figure 1 shows an overview of the Philips 
scheme’s hash extraction fingerprinting system. The 
audio signal framing is segmented into overlapping 
frames. Next, the audio signal is computed by applying 
Fourier transform to each frame. The results of the 
Fourier transform are divided into bands ranging from 
300 Hz to 2000 Hz. The energy is calculated on the 
basis of each sub-band, and the energy of band m of 

frame n  is denoted by  mnE , . In order to create a 

fingerprint block, a 32-bit sub-fingerprint value is 
extracted for each frame. 

The hash fingerprint block consists of 256 
sub-fingerprints. The sub-fingerprint denotes the m th 

bit of the fingerprint of frame n  as  mnF , , which is 

formally defined as 
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A lookup table (LUT) can be composed 
from the sub-fingerprint database that is created by 
(1). Using the LUT is approximately 800,000 times 
faster than using a music database (DB) for music 
retrieval (Haitsma et al, 2002). The LUT is composed 
of entries for all possible 32-bit sub-fingerprints. 
These entries are listed with pointers to the positions 

in the real fingerprint block lists, where the respective 
32-bit sub-fingerprints are located. In the LUT, 
compare with input query’s and DB’s sub-
fingerprints of the fingerprint block. Then, the bit 
error rate (BER) is calculated. If the BER is below 
the threshold, the probability is high that the 
extracted fingerprint block originates from 
corresponding music stored in the DB. 

 

 
Figure 1. Overview of Philips hash fingerprint scheme(Haitsma et al, 2002) 

 
2.1 Philips Hashing Algorithm 

 
Figure 2. (a) Fingerprint block of original music clip showing the bit errors in black, (b) inner-masked sub-
fingerprint block, and (c) outer-masked sub-fingerprint block (Wooram et al, 2010) 
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The audio fingerprint method using sub-

fingerprint masking is based on predominant pitch 
estimation. The temporal sequence of the harmonic 
structures in the frequency domain is the key to the 
human perception of music, and the recognition of 
predominant pitch is a process of perceiving the 
harmonic characteristics of partials. This algorithm 
has a bit-masking step to extract musically 
meaningful high-level attributes based on the 
predominant pitch estimation. 

However, this method uses only 5-bit hash 
values for the sub-fingerprint, using a mask generated 
by the predominant pitch estimation. If the DB in a 
music service is quite massive, the false accept rate 
(FAR) will be much higher. Therefore, this algorithm 
would exhibit low recognition accuracy for a massive 
music DB. 
 
3. Proposed Audio Fingerprint System  
3.1 System Overview  

The proposed audio fingerprinting system is 
based on the Philips hashing algorithm. To obtain a 
robust fingerprint in real noise environments, we 
propose the new conjoined fingerprint scheme, which 
is based on an inter- and intrahashing algorithm for 
fingerprint extraction. The audio signal is segmented 
into overlapping frames, and the hash values are 
extracted for the fingerprint. The hash value is a 32-
bit code derived from 33 perceptually divided 
frequency bands for each frame. We compose two 
kinds of hash values for the fingerprint. One is an 
interhash, which is obtained in a sequential frame, as 
in the Philips method. The other is an intrahash, 
which is obtained in the current frame. We then make 
a new, conjoined 32-bit sub-fingerprint that is 
compounded by sub-fingerprint masking. The search 
module compares the sequence of conjoined sub-
fingerprints with the target fingerprint block by 
simply applying a bit-wise check. The search results 
can be obtained by the number of matches that are 
under the bit error threshold. 
 
3.2 Inter- and Intrahashing Algorithm  

We use an audio signal containing one 
channel sampled at a rate of 44100 Hz, with 16 
bits per sample. The audio signal framing is 
segmented into Hanning-windowed overlapping 
frames. One frame is 371 ms long, and an 
overlapped length is taken every 11.6 ms. One 
important consequence of the frame’s slice 
length/spacing combination (371 ms slices, each 
11.6 ms long) is that the frequency varies slowly 
over time, affording sufficient robustness against 
position uncertainty in time. In addition, the signal 

is computed by applying Fourier transform to each 
frame. The frequency spectrum is divided 
logarithmically in a spectral range from 750 Hz to 
2750 Hz. In the Philips algorithm, the spectral 
range is from 300 Hz to 2000 Hz. Although in this 
range, it can search for music well in the lyrics of a 
song, it has difficulty searching music in the 
melodic parts due to the high frequency generated 
by instruments. Therefore, we use a spectral range 
from 750 Hz to 2750 Hz as an experiment. The 
energy is calculated on the basis of each sub-band, 
and the energy of band m of frame n  is denoted 

by  mnE , . In order to generate a fingerprint block, 

a 32-bit hash value is extracted for each frame. 
This is an interhash, as in the Philips 

method. The interhash denotes the m th bit of the 

hash of frame n  as  mnF inter , , which is formally 

defined as 
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When a number of bands are corrupted by 
noise, the Hamming distance between an original 
and a distorted sub-fingerprint could be greater, 
owing to the correlation of the filter band energies 
(FBEs). Thus, frequency filtering is generally used 
to decorrelate the FBEs, an approach that has been 
verified to a certain degree in speech recognition 
systems (Chen et al, 2003), (H-Y. Jung, 2004). 
Therefore, we use a band-pass second-order FIR 
filter(Mansoo et al, 2006)  in an interhash. The 
filter is defined as 

1)(  zzzH f                           
(3) 

We also use an intrahash that imply 
information inside a frame. This functions as a low-
pass filter, using the frequency average inside a 
frame. Therefore, the intrahash is a robust feature in 
terms of noise. It is particularly robust when the 
pitch changes suddenly between frames. For the 
intrahash, we first denote the frequency average 
inside the nth frame as  mnFreqave , , which is 

formally defined as  
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where  imnx ,,
 
is the frequency value inside the 

n th frame, the m th sub-band, and the i th 

frequency bin index, and W is the sub-band length. 
Next, we calculate the summation of 

),,( imnFreq sub_each

 

for each frequency sub-band. The 

),,(sub_each imnFreq

 

is a unit separator by the average 
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of frequency sub-band, which is formally defined as 
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Finally, the intrahash denotes the m th bit 

of the hash of frame n  as  mnF intra , , which is 

formally defined as
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 mnF sumsub ,_  
is the threshold for hash estimation 

inside a frame. 
 
3.3 Conjoined fingerprint  

We generate the new robust conjoined 
fingerprint by applying an inter- and intrahashing 
algorithm to each frame for the massive MIR 

service. For the new conjoined fingerprint, we must 
first estimate the predominant pitch(Song et al, 
2002) in order to use harmonic enhancement and 
harmonic summation in the frequency domain. We 
also compose the critical band, which is the band 
that contains the frequency index of the 
predominant pitch. Because the sub-fingerprint bit 
count is 32 bits, we use a critical band size of 16 bits 
for each interhash and intrahash. The critical band 
filters are defined as 


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
                               else        

k mmk m   if         
mnH pp

c
0

1
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(8) 

where pm  is the frequency band that contains the 

predominant pitch, and k is 8. Figure 3 shows a 

critical band filter based on predominant pitch 
estimation in the frequency domain. 

 

 
Figure 3. Critical band filter based on predominant pitch estimation in frequency domain. 
 

We also include a bit-masking step that extracts a musically meaningful fingerprint for each interhash 
and intrahash via critical band filtering, which is formally defined as 

00000&))}(32())(),({(),( intraintra_ FFFFkmzHmnFmnF pfpre 
        

(9)
 

FFFFkmzHmnFmnF pfpre 00000&)}())(),({(),( interinter_            (10) 

We then compose the new conjoined fingerprint for a sub-fingerprint that incorporates the relationship 
between the interhash and the intrahash. Because the conjoined fingerprint has information that is more 
meaningful in the predominant frequency area, we can search for music with higher precision in real noise 
environments. The conjoined fingerprint is formally defined as 

 

),(|),(),( mnFmnFmnF pre_interpre_intraconjoined 
           

(11)
 

where ),( mnFconjoined
 is composed of a filtered intrahash in the higher 16 bits and a filtered interhash in the lower 16 

bits. 
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4. Experiments and results  
In our experiment, we performed a simulation using a music database of 50,000 popular songs in the 

mp3 format (44100 Hz, 2 channels, 16 bits per sample) that were converted from an audio CD. They included 
various genres, such as rock, pop, hip-hop, dance, and classical. We randomly selected 500 songs for an audio 
query clip. The audio query clip was captured using an iPhone 4, which was placed 2.0 m away from a stereo 
speaker in real noise environments, such as a coffee shop, shopping mall, office, and street. Because the sound 
recording format is m4a in the iPhone 4, all audio query clips were recorded in this format. 

To evaluate our algorithm, we composed a query set classified according to signal-to-noise ratio 
(SNR) ranges. 

Table 1. Comparative performance according to SNR 

Method 
Noise 

Conjoined Sub-mask Philips 

Clean (Set 1) 100 100 100 
15.0–20.0 dB (Set 2) 83.8 55.8 72.9 
10.0–15.0dB (Set 3) 72.4 26.6 56.2 
5.0–10.0 dB (Set 4) 52.6 12.2 22.8 
0.0–5.0 dB (Set 5) 44.7 3.2 16.5 

%: Recognition accuracy. DB size=25,000, Query length=18 s. 
 

 
Figure 4. Comparison between recognition performance of proposed and existing algorithms 
 

Table 1 and Figure 4 show the results of the music retrieval experiments performed on a database with 
25,000 songs based on three different algorithms—the conjoined, sub-mask and Philips algorithms—using 500 
queries in one matching server. The query had 30 s offsets in m4a format audio and duration of 18 s. The 
results of a performance comparison show that our algorithm is superior to the existing algorithms in real noise 
environments.  

Furthermore, we devise a service system that checks the degree of recognition accuracy in a massive 
MIR service. A single matching server has limits to its performance, so the matching process needs to be 
dispersed for a massive MIR service. We therefore use one clustering server and two matching servers in a 
server group. The matching server is connected to a MySQL DB containing 25,000 songs, and it evaluates the 
match rate for queries with the songs in this DB when it receives an input music query clip. These match 
results are then forwarded to a clustering server. The clustering server then checks the BER results obtained 
from each matching server and selects the song having the minimum BER. Figure 5 presents a diagram of the 
service system for a massive MIR service. 
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Figure 5. Diagram for a massive MIR service. 

 

 

Table 2.  Comparative performance according to SNR and database size 

Method (DB amount) 
Noise 

Conjoined Sub-mask Philips 
2.5k 25k 50k 2.5k 25k 50k 2.5k 25k 50k 

Clean (Set 1) 100 100 100 100 100 100 100 100 100 
15.0–20.0 dB (Set 2) 92.8 83.8 77.2 95.1 55.8 37.4 89.2 72.9 53.3 
10.0–15.0 dB (Set 3) 83.7 72.4 63.3 86.6 26.6 14.3 76.4 56.2 43.3 
5.0–10.0 dB (Set 4) 72.1 52.6 31.4 78.9 12.2 6.8 35.6 22.8 24.4 
0.0–5.0 dB (Set 5) 56.2 44.7 28.6 54.6 3.2 3.2 18.4 16.5 6.7 

%: Recognition accuracy, Query length = 18 s. 
 

 
Table 2 show the results of the music retrieval experiments performed on a database with various 

numbers of songs based on three different algorithms—the conjoined, sub-mask and Philips algorithms—using 
500 queries, when an MIR service is employed. 
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(a) 2,500 songs 

 

 
(b) 25,000 songs 

 
(c) 50,000 songs 

Figure 6. Comparative performance according to SNR for variously sized databases. 
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Our experiments evaluate the recognition accuracy in DBs with 2,500, 25,000, and 50,000 songs. Figure 
6 shows the results of their comparative performance in terms of the SNR for these databases. In the DB with 
2,500 songs, the sub-mask method shows better recognition accuracy than the other methods in all SNR groups. 
However, recognition accuracy is more important when the DB size for an MIR service is fairly large. When the 
DB contains a larger amount of music, the conjoined and Philips methods afford a much higher recognition 
accuracy than the sub-mask method. Moreover, the conjoined method always produces a much higher degree of 
recognition accuracy than the Philips method, regardless of the DB size.  

Because the sub-mask method exhibits a high false accepted rate (FAR), it affords low recognition 
accuracy. Table 3 shows the average FAR results of music retrieval experiments performed on databases of 
various sizes using three different algorithms—the conjoined, sub-mask and Philips algorithms—with 500 
queries. 

Table 3.  Comparative average FAR according to database size 

Method (DB amount) 
Noise 

Conjoined Sub-mask Philips 

2.5k 25k 50k 2.5k 25k 50k 2.5k 25k 50k 

FAR (%) 2.5 12.8 18.4 2.8 63.7 82.1 2.4 14.2 18.8 

 
 

All the experiments are performed on a 
system composed of a matching server running the 
Windows 7 operating system (OS) and MySQL DB 
with an Intel Xeon 2.4 GHz 2EA processor and 128 
GB of memory as well as a clustering server running 
the Windows 7 OS with an Intel i5 2.66 GHz processor 
and 4 GB of memory. 
 
5. Conclusions  

We performed experiments using our newly 
proposed conjoined fingerprint algorithm, which uses 
interhashes and intrahashes to produce a robust 
fingerprint scheme in real noise environments. The 
experimental results show that the recognition 
accuracy of the proposed algorithm is much higher 
than that of the original Philips and sub-mask 
fingerprint algorithms in a massive MIR service. 
Because the conjoined fingerprint is based on the use 
of interhashes and intrahashes for each frame in 
predominant pitch estimation in the frequency 
domain, the relationship between frames is much 
stronger, which makes for a more robust fingerprint 
in real noise environments. In the future, we will seek 
to create methods that can improve both the retrieval 
time as well as the robustness in such environments. 
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