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Abstract: The linear non-homogeneous differential equations are generally solved by adopting by Laplace 
transform method or by method of variation of parameters or by method of undetermined coefficients. The paper 
inquires the linear non-homogeneous differential equations by applying Fourier Transformation. The purpose of 
paper is to prove the applicability of Fourier Transformations for the analysis of linear non-homogeneous 
differential equations. 
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Introduction: 

It has been noticed that Fourier transformation is 
helpful for scientists, researches and engineers in 
number of ways. It is a mathematical tool which is 
used in the solving the linear non-homogeneous 
differential equations by converting it from one form 
into another form. It is used in solving different types 
of problems in Physics, material sciences etc. [1-15]. It 
is also used to convert the signal system into 
frequency domain for solving it on a simple and easy 
way [16-27]. We can also apply it to analyze non- 
homogeneous differential equations without solving 
the corresponding homogeneous differential equations. 
It has wide applications in different fields of 
engineering and technology besides basic sciences and 
mathematics [28-40]. 
 

The Fourier transform is linear transform 

F [f] =  
1

√2π
� f(t)e�α�dt

�∞

�∞

 

then for any constant a and b. 
let f be continuous and piecewise smooth in 

(−∞, ∞).  let f(t) approch zero as |t| → ∞. 
If f and f ′are absoloutly integrable, then 

F [f ′(t)]= −iα F [f] 
Proof: 

F [f′(t)] =
�

√�π
∫ f ′(�)��α�

dt
�∞

�∞
 

= 
�

 √�π
[f(t)|�∞ 

∞ − iα ∫ f(t)e�α�∞

�∞
 

= −iα F [f] 
this result can be easily extended as 

F [f �(t)]= (−iα)� F [f] n=0, 1, 2, 3… 
 

Formulation 
�. ����� �� ������� �������������� 

d�y

dt�
+ 10a

dy

dt
+ 9a�y = e��|�| 

This can be written as 

(D� + 10aD + 9a�)y = e��|�| 
Taking Fourier Transform on both sides 

F{y′′} + 10aF{y′} + 9a�F{y} = F{e��|�|} 

[ (ip)� + 10aip + 9a�]F{p} =
2a

p� + a�
 

let u(ip) = [ (ip)� + 10aip + 9a�] and F�e��|�|�

= f (p) 
Then the solution is 

y (t) =
1

2π
� �

 f (p)e���

u(ip)
� dp

∞��γ

�∞��γ

 

y (t) =
1

2π
�

2a

p� + a�
�

 e���

(ip)� + 10aip + 9a�
� dp

∞��γ

�∞��γ

 

= −
1

2π
�

2a

p� + a�
�

 e���

(p − 9ai)(p − ai)
� dp

∞��γ

�∞��γ

 

or 

−
1

2π
� �

 2ae���

(p − 9ai)(p + ai)(p − ai)�
� dp

∞��γ

�∞��γ

 

−
a

π
� �

 e���

(p − 9ai)(p + ai)(p − ai)�
� dp

∞��γ

�∞��γ

 

 
Case-I: The singularities with in contour are 

1. simple pole p = 9ai, 
2. double pole p = ai 

Therefore, t > 0, 
we have by cauchy′s residue theorem 
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y(t) = −
a

π
 2 πi [ sum of the residues of 

the integral at the singularities] … . . (1) 
Residue(p = 9ai), a simple pole

= lim
�→���

�
 e���

(p + ai)(p − ai)�
 � 

 ie����

640a�
 

Residue(p = ai), a simple pole 

= lim
�→��

d

dp
�

 e���

(p + ai)(p − 9ai)
 � 

=
 ite���

16a�
+

3 ie���

128a�
 

Hence, from (1), 

y(t) = −2ai. �
 ie����

640a�
+

 ite���

16a�
+

3 ie���

128a�
� 

Case-I: when t< 0 
If t < 0, then we closed the contour in the  
Lower half plane and hence the simple  
pole p = −ai is the only singularity, therefore, 

y(t) = −(−
a

π
) 2 πi [ residue of integrand at the 

singularity p = −ai] 
= 2ai [residue at p = −ai] … . . (2) 

But, 
Residue(p = ai), a simple pole 

= lim
 �→���

�
 e���

(p − ai)�(p − 9ai)
 � 

= lim
 �→���

�
 e���

(p − ai)�(p − 9ai)
 � 

=
ie���

40a�
 

Hence, from (1), 
= 2ai [residue at p = −ai 

= 2ai �
ie���

40a�
� 

y (t) = �−
e���

20a�
� 

�. ����� �� ������� �������������� 
d�y

dt�
+ 5

dy

dt
+ 4y = cost 

This can be written as 
(D� + 5D + 4)y = cost 

Taking Fourier Transform on both sides 
F{y′′} + 5F{y′} + 4F{y} = F{cost} 

or [ (ip)� + 5ip + 4]F{p} =
ip

1 − p�
 

let u(ip) = [ (ip)� + 5ip + 4] and F �
ip

1 − p�
� = f (p) 

Then the solution is 

y (t) =
1

2π
� �

 f (p)e���

u(ip)
� dp

∞��γ

�∞��γ

 

Or  

y (t) =
1

2π
�

ip

1 − p�
�

 e���

[ (ip)� + 5ip + 4]
� dp

∞��γ

�∞��γ

 

= −
1

2π
�

ip

1 − p�
�

 e���

−[p� − 5ip − 4]
� dp

∞��γ

�∞��γ

 

Or 
i

2π
� �

 pe���

(p − 1)(p + 1)(p − 4i)(p − i)
� dp

∞��γ

�∞��γ

 

y(t) =
i

2π
 2 πi [ sum of the residues of 

the integral at the singularities] 
y(t) = −[ sum of the residues of 

the integral at the singularities] … . . (3) 

Residue(p = 1), a simple pole = lim
�→�

�
 pe���

(p + 1)(p − 4i)(p − i)
� 

 e��

−2(3 + 5i)
 

Now, 

Residue(p = −1), a simple pole = lim
�→��

�
 pe���

(p − 1)(p − 4i)(p − i)
� 

 e���

2(−3 + 5i)
 

And, 

Residue(p = i), a simple pole = lim
�→�

�
 pe���

(p − 1)(p − 4i)(p + 1)
� 

 e��

6
 

And, 

Residue(p = 4i), a simple pole = lim
�→�

�
 pe���

(p − 1)(p + i)(p + 1)
� 
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 −4e���

51
 

From (3),  
y(t) = −[ sum of the residues of 

the integral at the singularities] 

y(t) =
 e��

−2(3 + 5i)
+

 e���

2(−3 + 5i)
+

 e��

6
 

−4
 ����

��
  

 
Conclusion: 

In this paper we have applied the Fourier 
transformation Fourier Transformations for the 
analysis of linear non-homogeneous differential 
equations. It has been noticed that this technique is 
very much capable in finding solutions of linear non-
homogeneous differential equations.  
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