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Abstract: Convergence of random variables (sometimes called stochastic convergence) is where a set of numbers 
settle on a particular number. It works the same way as convergence anywhere else; For example, cars on a 5-line 
highway might converge to one specific lane if there’s an accident closing down four of the other lanes. In the same 
way, a sequence of numbers (which could represent cars or anything else) can converge (mathematically, this time) on 
a single, specific number. Certain processes, distributions and events can result in convergence— which basically 
mean the values will get closer and closer together. When Random variables converge on a single number, they may 
not settle exactly that number, but they come very, very close. In notation, x (xn → x) tells us that a sequence of 
random variables (xn) converges to the value x. 
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Introduction  

Statistics is concerned with the collection and 
analysis of data and with making estimations and 
predictions from the data. Typically two branches of 
statistics are discerned: descriptive and inferential. 
Inferential statistics is usually used for two tasks: to 
estimate properties of a population given sample 
characteristics and to predict properties of a system 
given its past and current properties. To do this, 
specific statistical constructions were invented. The 
most popular and useful of them are the average or 
mean (or more exactly, arithmetic mean) m and 
standard deviation s (variance s 2). To make 
predictions for future, statistics accumulates data for 
some period of time. To know about the whole 
population, samples are used. Normally such 
inferences (for future or for population) are based on 
some assumptions on limit processes and their 
convergence. Iterative processes are used widely in 
statistics. For instance the empirical approach to 
probability is based on the law (or better to say, 
conjecture) of big numbers, states that a procedure 
repeated again and again, the relative frequency 
probability tends to approach the actual probability. 
The foundation for estimating population parameters 
and hypothesis testing is formed by the central limit 
theorem, which tells us how sample means change 
when the sample size grows. In experiments, scientists 
measure how statistical characteristics (e.g., means or 
standard deviations) converge (cf., for example, [23, 

31]). Convergence of means/averages and standard 
deviations have been studied by many authors and 
applied to different problems (cf. [1-4, 17, 19, 20, 
24-28, 35]). Convergence of statistical characteristics 
such as the average/mean and standard deviation are 
related to statistical convergence as we show in this 
section. 

Let m and c be the spaces of all bounded and 
convergent real sequences x = (xk) normed by x = supn 
|xn|, respectively. Let B be the class of (necessarily 
continuous) linear functionals β on m which are 
nonnegative and regular, that is, if x ≥ 0, (i.e., xk ≥ 0 for 
all k ∈ N:= {1, 2,...}) then β(x) ≥ 0, and β(x) = limk xk, 
for each x ∈ c. If β has the additional property that 
β(σ(x)) = β(x) for all x ∈ m, where σ is the left shift 
operator, defined by σ(x1, x2,...)=(x2, x3,...) then β is 
called a Banach limit. The existence of Banach limits 
has been shown by Banach [2,17,19], and another 
proof may be found in [3]. It is well known [21] that the 
space of all almost convergent sequences can be 
represented as the set of all x ∈ m which have the same 
value under any Banach limit. In the research, we study 
some generalized limits so that the space of all 
bounded statistically convergent sequences can be 
represented as the set of all bounded sequences which 
have the same value under any such limit. It is proved 
that the set of such limits and the set of Banach limits 
are distinct but their intersection is not empty.  

In this section we study a useful characterization 
of statistical r-convergence and some more results. 
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Theorem 5.5.1. A sequence x = {ξk} is statistically 
r-convergent if and only if every statistically dense 
subsequence of it is statistically r-convergent. 

Proof. First suppose that st-r-lim ξk = ξ. Let us 

take a statistically dense subsequence y = 
}{

nk  of x 
and assume that it is statistically r-divergent.  

Then for any real number ξ, there is some ε > 0 
such that  

δ(Br,ε) > 0  

where Br,ε = {kn ∈ ℕ: | nk – ξ| > r + ε}. 
As y is a subsequence of x, we have 
Ar,ε ⊇ Br,ε 
where Ar,ε = {k ∈ ℕ: |ξk – ξ| > r + ε}. 
Consequently, δ(Ar,ε) ≥ δ(Br,ε) > 0 
as the subsequence y is statistically dense in x.  
This contradicts the fact that x is statistically 

r-convergent.  
Hence y is also statistically r-convergent. 
Conversely, suppose that every statistically dense 

subsequence of x is statistically r-convergent. Then x is 
also statistically r-convergent since x is a statistically 
dense subsequence of itself. 

This completes the proof of the theorem. 
Corollary 5.2.2. A statistically r-convergent 

sequence contains not only dense statistically 
r-convergent subsequences, but also dense 
r-convergent subsequences. 

Theorem 5.2.5. A sequence x = {ξk} is 
statistically r-convergent ξ to if and only if there exists 
a set K = {k1 < k2 <…< kn <…} ⊆ ℕ such that δ(K) = 1 

and r-lim nk = ξ. 
Proof. First suppose that st-r-lim ξk = ξ. 

Consider the sets Kr,j = {k ∈ ℕ: |ξk – ξ| < r + j

1

} 
for all j = 1,2,3…. 

As Kr,j = ℕ – {k ∈ ℕ: |ξk – ξ| ≥ r + j

1

} and x is 
statistically r-convergent to ξ, we have  

δ(Kr,j) = 1 j = 1,2,3…  ... (1) 
Now  

Kr,j+1 = {k ∈ ℕ: |ξk – ξ| < r + 1j

1

 } 

 ⊂ {k ∈ ℕ: |ξk – ξ| < r + j

1

} 
= Kr,j. 
So   
Kr,j+1 ⊂ Kr,j  for all j = 1,2,3…  …(2) 
Let us choose an arbitrary number v1 ∈ Kr,1. Then 

according to (1) and (2), ∃ v2 > v1, v2 ∈ Kr,2 such that  

n

1

|{k ≤ n: |ξk – ξ| < r + 2

1

}| > 2

1

 for all n ≥ 
v2. 

In a similar way, ∃ v3 > v2, v3 ∈ Kr,3 such that  

n

1

|{k ≤ n: |ξk – ξ| < r + 3

1

}| > 3

2

 for all n ≥ 
v5. 

We continue this process and construct by 
induction a sequence 

v1 < v2 <…< vj <… 
of positive integers such that for j = 1,2,3,… 
vj ∈ Kr,j and 

n

1

|{k ≤ n: |ξk – ξ| < r + j

1

}| > j

1j 

for all  
n ≥ vj.    …(3) 
Now we construct the set K as follows: 

K = {k ∈ ℕ: 1 ≤ k ≤ v1} ∪ (∪ {k ∈ Kr,j: vj ≤ k ≤ vj+1})…
     (4) 

  j∈ℕ 
Then from (2), (3) and (4) we conclude that for all 

n from the interval vj ≤ n ≤ vj+1 and for all j = 1,2,3,…, 
we have 

n

1

|{k ≤ n: k ∈ K}| = n

1

|{k ≤ n: |ξk – ξ| < r + j

1

}| > 

j

1j 

. 
Hence it follows that δ(K) = 1. Take some ε > 0 

and choose a number j ∈ ℕsuch that j

1

 < ε. If n ∈ K 
and n ≥ vj, then, by definition of K, there exists a 
number m ≥ j such that vm ≤ n ≤ vm+1 and thus n ∈ Kr,m. 
Hence we have  

|ξn – ξ| < r + j

1

 < r + ε. 

As this is true for all n ∈ K, we see that r-
Kk

k
lim



ξk = 
ξ.  

Conversely, suppose that there exists a set K = {k1 
< k2 <…< kn <…} ⊆ ℕ such that δ(K) = 1 and r-lim 

nk = ξ. Then for given ε > 0 there is a number n such 
that for each k ∈ K  

| k – ξ| < r + ε ∀ k ≥ n.  …(5)  

Put Ar,ε = {k ∈ ℕ: | k – ξ| ≥ r + ε}. 
Then we have 
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Ar,ε ⊆ ℕ – 
,...}k,k,k{ 2n1nn  . 

Since δ(K) = 1, we get δ(ℕ – 

,...}k,k,k{ 2n1nn  ) = 0. 
Thus δ(Ar,ε) = 0 for each ε > 0. 
⇒ st-r-lim ξk = ξ. 
This completes the proof of the theorem. 
Corollary 5.2.5. A sequence x = {ξk} is 

statistically r-convergent to ξ if and only if there exists 
a sequence y = {ηk} such that δ({k ∈ ℕ: ηk = ξk}) = 1 
and r-lim ηk = ξ. 

Corollary 5.2.5. The following statements are 
equivalent: 

1. st-r-lim ξk = ξ; 
2. There is a set K = {k1 < k2 <…< kn <…} ⊆ ℕ 

such that δ(K) = 1 and r-lim ξk = ξ; 
3. For each ε > 0, there exists a set K ⊆ ℕ and a 

number m ∈ K such that δ(K) = 1 and |ξk – ξ| < r + ε for 
all k ∈ K and k ≥ m. 

Notation. We denote the set of all statistical 
r-limits of a sequence x = {ξk} by Lr-st (x), i.e.  

Lr-st (x) = {ξ ∈ R: st-r-lim ξk = ξ} 
Theorem 5.2.6. For every sequence x = {ξk} and 

number r ≥ 0, Lr-st (x) is a convex subset of real 
numbers. 

Proof. Let β,η ∈ Lr-st ∈(x) such that β < η and ξ  
∈[β,η]. Then it is enough to prove that ξ  Lr-st (x). 

∈ ∈Since ξ  [β,η], there is a number λ  [0,1] such 
that ξ = λβ + (1–λ)η. 

∈As β,η  Lr-st (x), for each ε > 0 there exist index 
sets K1, K2 with δ(K1) = δ(K2) =1 and positive integers 
n1,n2 such that  

|ξk – β| < r + ε ∈for all k  K1 and k ≥ n1 
|ξk – η| < r + ε  ∈for all k  K2 and k ≥ n2. 
Let us put K = K1∩K2 and n = max{n1,n2}. Then, 

since intersection of two statistically dense sets is a 
statistically dense set, we have δ(K) = 1. 

∈Now for all k ≥ n with k  K, we get 
|ξk – ξ| = |ξk – λβ – (1–λ)η| 
  = |ξk + λξk – λξk – λβ – (1–λ)η|  
  = |(λξk – λβ) + {(1–λ)ξk – (1–λ)η}| 
  = |λ(ξk – β) + (1–λ) (ξk – η)| 
  ≤ λ |ξk – β| + (1–λ)|ξk – η| 
  < λ(r + ε) + (1–λ) (r + ε) 
  = r + ε 
So we conclude from Theorem 5.2.3 that st-r-lim 

ξk = ξ. 
⇒ ∈ξ  Lr-st (x). 
Hence Lr-st (x) is a convex subset of real numbers. 
This completes the proof of the theorem. 
Lemma 5.2.7. If q > r, then Lr-st ⊆(x)  Lq-st (x). 
Proof. ∈Let ξ  Lr-st (x). Then st-r-lim ξk = ξ.  
Now by Lemma 5.1.4, st-q-lim ξk = ξ,  
i.e.  ∈ξ  Lq-st (x).  
Hence Lr-st ⊆(x)  Lq-st (x). 

This completes the proof of the lemma. 
Let x = {ξk} and y = {ηk} be two sequences. Then 

their sum x + y is equal to the sequence {ξk + ηk} and 
their difference x – y is equal to the sequence {ξk – ηk}. 

Theorem 5.2.8. Let st-r-lim ξk = ξ and st-q-lim ηk 

= η. Then  
1. st-(r + q)-lim {ξk + ηk} = ξ + η; 
2. st-(r + q)-lim {ξk – ηk} = ξ – η; 
3. st-(|c| r)-lim cξk ∈= cξ for any c  R 
where cx = {cξk}. 
Proof. 1. Since st-r-lim ξk = ξ, for every ε > 0 

there exists a set K1 ⊆ℕ  and a number m1 ∈ K1 such 
that δ(K1) = 1 and   

|ξk – ξ| < r + 2

ε

 ∀ ∈ k  K1 and k ≥ m1. 
Also st-q-lim ηk = η, then for every ε > 0 there 

exists a set K2 ⊆ℕ  and a number m2 ∈ K2 such that 
δ(K2) = 1 and  

|ηk – η| < q + 2

ε

 ∀ ∈ k  K2 and k ≥ m2. 
Let m = max {m1, m2} and K = K1∪K2. Then 

∀ ∈δ(K) = 1 and  k  K and k ≥ m, we have 
|(ξk + ηk) – (ξ + η)| = |(ξk – ξ) + (ηk – η)| 
  ≤ |ξk – ξ| + |ηk – η| 

  ≤ r + 2

ε

 + q + 2

ε

 
= r + q + ε. 
So by Theorem 5.2.3, we have 
st-(r + q)-lim {ξk + ηk} = ξ + η. 
 
2. ∀ ∈From part (1),  k  K and k ≥ m, we have 
|(ξk – ηk) – (ξ – η)| = |(ξk – ξ) – (ηk – η)| 
  ≤ |ξk – ξ| + |ηk – η| 

≤ r + 2

ε

 + q + 2

ε

 
= r + q + ε. 
So by Theorem 5.2.3, we have 
st-(r + q)-lim {ξk – ηk} = ξ – η. 
 
5. Since st-r-lim ξk = ξ, for every ε > 0 there exists 
⊆ℕa set K   and a number ∈m  K such that δ(K) = 1 

and  

|ξk – ξ| < r + |c|

ε

  ∀ ∈ k  K and k ≥ 
m. 

Now  
|cξk – cξ| = |c||ξk – ξ| 

  < |c| (r + |c|

ε

) 
  = |c|r + ε. 
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So by Theorem 5.2.3, we have 
st-(|c| r)-lim cξk = cξ. 
 
Corollary 5.2.9. If st-lim ξk = ξ and st-lim ηk = η. 

Then  
1. st-lim {ξk + ηk} = ξ + η; 
2. st-lim {ξk – ηk} = ξ – η; 
3. st-lim cξk ∈= cξ for any c  R. 
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