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Abstract: This study evaluates the impact of land use/land cover change dynamics on Gelda stream using SWAT 
and SWAT-CUP models in Gelda watershed. Environment for visualizing images (ENVI) and Arc GIS were used to 
generate land use land cover maps from Landsat TM, ETM+, and OLI/TIRS developed in 1984, 2000, and 2016, 
respectively. The land cover maps were generated using the Maximum Likelihood Algorithm of Supervised 
Classification. Change detection was done by using ENVI 5.1 software. During this study, most parts of the grazing 
land and vegetative covers were changed to agricultural land (14.32%). An increase of agricultural land by 32.23 % 
from 1984- 2016 resulted in a change of stream flow. In the change detection analysis from this study between 1984 
and 2016, the sum of forest, bush, and grazing lands were significantly changed to agricultural land by 32.77% 
whereas the sum of the forest, bush, and grazing lands were changed to built-up area by 1.14 %. The Model 
calibration and validation for stream flow were done for 20 (1987-2006) and 10 (2007-2016) years without warm up 
period respectively. The monthly calibration and validation results showed that a very good agreement between 
measured and simulated flow with R2 of 0.86, NSE of 0.81 and PBIAS of 0.08 for calibration, and R2 of 0.88, NSE 
of 0.78, and PBIAS of 0.11 for validation. The analysis indicated that, the stream flow during the wet months has 
increased, while the flow during the dry months has decreased. The surface runoff increased, while groundwater 
flow de-creased from the year 1984-2016. The model results showed that the stream flow characteristics was 
changed due to the land use land cover change during the study periods from1984-2016.  
[Ayalew M., Enku T. Evaluate the Impacts of Land Use/Land Cover Dynamics on Stream Flow of Gelda 
Watershed, Upper Blue Nile Basin, Ethiopia. Researcher 2019;11(9):8-19]. ISSN 1553-9865 (print); ISSN 2163-
8950 (online). http://www.sciencepub.net/researcher. 2. doi:10.7537/marsrsj110919.02. 
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1 Introduction 

Land use /land cover change is straightforwardly 
linked to the dynamics of human activities. Land 
use/land cover dynamics modify the availability of 
different resources including vegetation, soil, water 
(Ahmadizadeh, 2014). Changes in land use/land cover 
alter both runoff behaviour and the balance that exists 
between evapotranspiration, groundwater recharge and 
stream discharge in specific areas and in entire 
watersheds, with considerable consequence for all 
water users. The LULC during the past three decades 
are mostly linked to agricultural development 
attributed to population pressure and environmental 
changes (Akpoti et al., 2016).  

The current trends in land use land cover must be 
improved, toward the resource management and 
conservation of the existing vegetation and other 
natural resources. These should be done in teamwork 
with all stakeholders for effective management of 
natural resources (Asres et al., 2016). This type of 
study aimed to evaluate the impact of land use land 
cover on the hydrologic features of a watershed 
(Briones et al., 2016). Real change and final change 
were analysed to determine the values of LU changes 

and their hydrological consequences on watershed 
(Zhang et al., 2014).  

The main objective of this study is to evaluate the 
effect of land use-land cover dynamics on the 
Hydrology of Gelda watershed. Therefore, this paper 
attempts to assess land use and land cover changes, 
quantify the major land use-land cover changes and 
assess the effect of land use land cover change on the 
hydrology of Gelda watershed in the past 33 years 
(1984-2016).  

 
2. Methodology 
2.1 Study Area Description 

Gelda watershed is one of the sub basins in the 
Lake Tana basin and far from Bahir Dar town by 36 
km in the east direction and it is located at Latitude 
11.64°N and 11.71°N, and longitude 37.69°E and 
37.61°E (Figure 1). The study area covers 
approximately 4,479.43 ha (44.8 km2) and the 
elevation of this watershed ranges from 2005m to 
2478m above mean sea level. Based on observed data, 
the average annual minimum and maximum 
temperatures of the study area are 7.80oC and 29.79oC 
respectively whereas the average annual rainfall ranges 
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from 1201-1497 mm. This study area has three major 
soil types namely; Nitosols (7.5%), Luvisols (25.5%) 
and Vertisols (67.0%) with their physical and chemical 
properties.  

 

 
Fig. 1. Location of the study area map  

 
 
2.2 Image preprocessing and Classification 

Cloud-free Landsat images were selected to 
classify the study area. The images were Landsat-5 
TM image for 1984, Landsat-7 ETM+image for 2000 
and Landsat-7 OLI/TIRS image for 2016. All images 
were rectified to UTM Zone 37N, WGS1984 using 
well distributed ground control points. The satellite 
images pre-processing before any analysis is very 
important in order to establish more direct relationship 
between the acquired data and biophysical phenomena 
(Hassan et al., 2016). Radiometric calibration and 
Atmospheric correction were done to avoid 
radiometric errors and avoid absorption and scattering 
of solar radiation from an object respectively.  

The land use land cover classification was done 
using Environment for Visualizing images (ENVI5.1) 
integrating with Arc GIS 10.4.1 under supervised 
classification, Maximum Likelihood is more preferable 
and used in this study. The supervised classification 
involved the selection of a number of known sites for 
each image.  
2.3 Images Classification Accuracy Assessment  

The objective of Accuracy Assessment for 
Classified Images is to determine quantitatively how 
pixels were grouped successfully in to the correct 
feature classes (Manandhar et al., 2009). To assess the 
classification accuracy, confusion matrix was used 
including (91, 107, and 115) ground control points and 
used to validate the classified image for each image 
and checked by Google earth. From this error matrix, a 
number of accuracy measures; overall accuracy, user’s 
accuracy, and producer’s accuracy were determined 
(Valiquette et al., 1994). In addition, the kappa 
statistics is used for the accuracy assessment. The 

Kappa statistic incorporates the diagonal elements of 
the error matrices (i.e., classification errors) and 
represents agreement obtained after removing the 
proportion of agreement that could be expected to 
occur by chance. Kappa value lies between -1 and 1, 
where -1 represents no agreement at all whereas 1 
indicates a perfect agreement. K = (Po- Pe)/ (1- Pe), 
where; Po proportion of correct agreements and Pe 
proportion of expected agreement.  
2.4 Change detection analysis 

Next to the, the post-classification, change 
detection statistics were computed by comparing 
values of area of one data set with the corresponding 
value of the second data set in each period. The 
method used for LULC change detection in this study 
is the comparison statistics. Percentage area for each 
land cover classes were derived from the classified 
images for each year (1984, 2000, and 2016) 
separately using ENVI 5.1. The change detection 
between 1984 and 2000, 2000 and 2016, and finally 
1984 and 2016 images were done. But in order to get a 
significant change, the time between 1984 and 2016 
was selected in 33 years.  
2.5 Climate Forecast System Reanalysis (CFSR) 
Data  

Correctly representing weather data is critical to 
hydrological modeling, but poor quality observations 
can often compromise model accuracy (Zhang et al., 
2012). CFSR datasets help to address this basic 
challenge. The CFSR dataset provides continuous, 
globally available records. However, the use of CFSR 
data for hydrological modeling in tropical and semi-
tropical basins has not been adequately evaluated 
(Fuka et al., 2014). In this study, some techniques were 
used to use CFSR data as follows. 

1. Adding both local and CFSR data on the GIS 
interface using their longitude, latitude, and elevation. 
In this step we can identify which CFSR rainfall 
stations are near to or far from the study area. 

2. making a linear relationship between each 
local station with respect to coefficient of 
determination (R2) between CFSR and observed RF 
data and developing correlation equations for each 
station like Y=αx±b where y is observed rainfall data, 
α is coefficient of CFSR rainfall data, x is CFSR data 
and b is the intercept. Finally converting the CFSR 
data into observed data by using the developed 
correlation equation.  

3. Making Thiessen polygon on the GIS 
interface to select the most dominant RF stations to the 
watershed. This polygon defines an area of influence 
around its sample point, and any location inside the 
polygon is closer to the other sample points.  
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Fig. 2. Thiessen polygons of rain fall stations  
 

4. Measuring the Arial distances starting from 
the mean center of the watershed. In this step, 

Anbesame and Arbgebeya are better (nearer) than the 
others to the watershed. Due to this topographical 
location, Arbgebeya station has its own influence on 
the stream flow on the watershed. 

5. Taking the selected nearest stations depend on 
their distance from the mean center of the watershed 
and topographic conditions of the watershed. 

6. Making long term annual mean rainfall for 
both selected stations from 2008-2014 based on 
observed and CFSR Rainfall data and then developing 
conversion factor (c). Arbgebeya Rainfall station is far 
from the watershed but located in the upper part of the 
watershed and this influence on stream flow of Gelda 
River (Table 2). 

 
Table 1. Distances of each Rainfall station from the center of Gelda watershed  

Station Name Distance (km) from the centre Remark 
Anbesame 4.48 Selected 
Arbgebeya  12.04 Selected 
Wanzaye  12.50 Not Selected 
Hamusit 15.50 Not Selected 
Zenzelma  21.40  Not Selected 
Tis Abay 22.30 Not Selected 

 
Table 2. Long term annual mean rainfall values from 2008-2014 for both observed & CFSR data 

Station Mean Annual Observed data Mean Annual CFSR data C=  
Anbesame 1396.25 1478.48 0.9444 
Arbgebeya 1437.50 1536.85 0.9354 

 
7. In order to characterize the Gelda watershed 

in rainfall, an average value of the two nearest stations 
to the watershed have to be calculated because their 
Conversion factors are almost close to each other 
(Table 2) that means, Gelda watershed daily rainfall 
value = ((Anbesame RF+Arbgebeya RF))/2. For this 
study, applying the averaged values of the two rainfall 
stations to the watershed and preparing this averaged 
daily RF data for SWAT model as an input in the form 
of data base form (dbf). Then run the model 
(simulation) using this converted CFSR rainfall data 
followed by calibration and validation on SWAT and 
SWAT-CUP models respectively. 
2.6 Consistency checking using Double Mass curve  

Double Mass Curve (DMC) analysis is the 
method that used to check consistency of rainfall as 
well as flow for adjustment of inconsistent data. The 
inconsistency data series must be adjusted to consistent 
values using proportionality equation: 

Proportionality =   
The DMC plot shows (Figure 3) two of stations 

that found around the Gelda watershed has better 

correlation because plot of cumulative annual rainfall 
of neighbouring versus each station are align on a 
single straight line. 
2.7 Homogeneity checking using Rainbow software 

 

 
Fig. 3. Anbesame homogeneity test 
 
The homogeneity of the data of a time series was 

tested by evaluating the maximum and the range of the 
cumulative deviations from the mean. In this study, 
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Anbesame RF station, Arbgebeya RF station and 
Gelda stream flow gauge were homogeneous at 90%, 
95% and 99% probability, respectively (Figure 4,5, 
and 6). 

 

 
Fig. 4. Arbgebeya RF homogeneity test  
 

 
Fig. 5. stream flow homogeneity test 
 

2.8 Soil and Water Assessment Tool Model 
In the SWAT model, there are two options in 

defining HRU definition: assign a single HRU to each 
sub watershed or assign multiple HRUs to each sub 
watershed based on a certain threshold value. The 
SWAT user’s manual Winchell et al. (2007) suggests 
that a 20 % land use threshold, 10 % soil threshold and 
20 % slope threshold are adequate for most modeling 
application. Therefore, for this study, HRU definition 
with multiple options that accounts for 20% land use, 
10% soil and 20% slope threshold combination was 
used. These threshold values indicate that land uses 
which form at least 20% of the sub watershed area and 
soils which form at least 10% of the area within each 
of the selected land uses were considered in 
Hydrologic Response Units.  

SWAT requires daily precipitation, air 
temperature, solar radiation, wind speed, and relative 
humidity. These data will be generated in two cases: 
when the user specifies that simulated weather will be 
used or when measured data is missing (Rajawatta et 
al., 2014). In this study area, there is a lack of full and 
realistic long period of climatic data. The daily values 
of all climatic variables from CFSR data were used 
instead of measured data. This study used these CFSR 

data for all climatic variables obtained from 
https://globalweather.tamu.edu/ for the stations around 
Gelda watershed. For weather generator data 
definition, the weather generator data file in data base 
form (dbf) was selected first. Then, rainfall, 
temperature, relative humidity, solar radiation and 
wind speed data were selected and added to the model 
respectively.  
2.9 Sensitivity analysis, calibration and validation 
in the SWAT-CUP model 

A sensitivity analysis is needed to determine the 
most sensitive parameters in the basin for the 
calibration and validation process and also helps to 
understand the model's behavior and the predominant 
processes (Narsimlu et al., 2015).  

The calibration was performed based on the 
parameters and the following objectives: a good 
agreement between the averages simulated and 
observed catchment runoff volume, a good overall 
agreement of shape of the hydrograph, and a good 
agreement for peak flow and low flow with respect to 
timing, rate and volume. To fulfil these objectives, the 
Sequential Uncertainty Fitting (SUFI-2) model for 
optimization and uncertainties analysis was used in the 
SWAT-CUP for calibration and validation. The Nash-
Sutcliff (NS) coefficient was assigned as the objective 
function. In SUFI-2, a parameter uncertainty was 
propagated as uniform distribution through a statistical 
method for generating a sample of reasonable 
collections of parameter values from sampling. It is 
referred to as the 95% representing prediction 
uncertainty (95PPU) (known as P-factor) calculated at 
2.5% and 97.5% levels for each parameter. The 95PPU 
is the degree to which all uncertainties are accounted. 
2.10 Model Performance Evaluation 

Calibration and validation results indicate that 
SWAT model is an effective watershed management 
tool that can be run with available data. For this study 
three objective functions have been used to measure 
the overall fit between the observed and predicted 
stream flow by SWAT model as described below.  

Percent of Bias (PBIAS): - As a general rule 
given by Moriasi et al. (2007), a PBIAS of 10% or less 
is considered very good, between ±10% and ±15% is 
good, and between ±15 and ±25% is satisfactory 
whereas values greater than 25% indicate an” 
unsatisfactory” model simulation. The optimal value of 
PBIAS is zero. A positive PBIAS value indicates the 
model is under-predicting whereas negative values 
indicate over-predicting using the equation:  

PBIAS= *100  
Where; “Qsim” is the simulated flow and “Qobs” 

is the observed flow.  
Coefficient of Determination (R2):- R2 ranges 

from 0 (indicates the model is poor) to 1 (indicates the 
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model is good), with higher values indicating less error 
variance, and typical values greater than 0.6 are 
considered acceptable (Bonumá et al., 2015). The R2 is 
calculated as using the equation:  

  =   
Where, Xi-measured value, Xav- average 

measured value, Yi- simulated value and Yav- average 
simulated value in (m3/s). 

Nash-Sutcliffe Efficiency (NSE): - The value of 
NSE ranges from negative infinity to 1 (best) i.e., (-∞, 
1]. NSE value < 0.5 indicates the mean observed value 
is better predictor than the simulated value, which 
indicates unacceptable performance while NSE values 
greater than 0.5, the simulated value is better predictor 
than mean measured value and generally viewed as 
acceptable performance. The NSE indicates that how 
well the plots of observed versus simulated data fits 
the 1:1 line and computed using the equation: 

NSE=1-  
2.11 Evaluation of Stream Flow due to Land Use 
Land Cover Change  

Simulation of the impacts of land use/land cover 
change on Gelda stream flow was one of the most 
significant parts of this study. There was a high 
expansion of cultivated lands in the expenses of forest, 
bush, and grazing lands during the study periods 
considered. To evaluate the variability of stream flow 
due to land use/land cover change from 1984 to 2016, 

three independent simulation runs were conducted on a 
yearly basis using all land use/land cover maps for the 
period of 1984-2016 keeping other input parameters 
unchanged. Seasonal stream flow variability of 1984, 
2000 and 2016 due to the land use/land cover change 
was assessed and comparison were made on stream 
flow contributions based on observed stream flow 
data, and surface runoff & ground water flow 
contributions to stream flow based on the simulation 
outputs using SWAT Viewer. 
 
3. Results And Discussion 
3.1 Accuracy Assessment Using Confusion matrixes 

To assess the classification accuracy, confusion 
matrix was used including overall, user’s and 
producer’s accuracies. A classification is not complete 
until its accuracy is assessed using the known Kappa 
statistics (Forkuor and Cofie, 2011). In this study, the 
confusion matrix was used ground control points 
(91,107,115 for 1984, 2000 and 2016 images, 
respectively) to validate the classified images in each 
period in addition to unchanged ground control points 
from1984 to 2016. 

The overall accuracies for 1984, 2000, and 2016 
were, 81.3%, 83.2%, and 90.4%, with Kappa statistics 
of 73.0%, 76.1%, and 87.2% and User’s and 
producer’s accuracies of individual classes were also 
consistently high, ranging from 66.7% to 92.9% and 
75.0% to 96.0%, respectively (Table 3). 

 
 

Table 3. Accuracy assessment from 1984 to 2016 
Year O.A Accuracy User’s Accuracy Producer’s Accuracy Kappa coefficient 
1984 81.3% 66.7-92.9%  75.0-92.9% 73.0% 
2000 83.2%  76.5-95.5% 76.5-88.9% 76.1% 
2016 90.4%  83.3-96.4%  84.2-96.0% 87.2% 

 
 

3.2 Land Use and Land Cover Maps  
Based on the information from field survey; 

Forest land, bush land, grazing land, agricultural land 
and built up were the major land use land cover classes 
of Gelda watershed. Land-cover conversions are 
measured by a shift from one land-cover category to 
another, as it is the case in agricultural expansion, 
deforestation, or change in urban extent. After relevant 
bands selected, falls color composite were considered 
for layer stacking, Red, Green and Blue (RGB) bands 
3, 2, 1 for both 1984 and 2000 images and 4, 3, 2 for 
2016 images were combined to make conventional 
color composite images before any classification is 
done each year as follows. 

 
Fig. 6. Gelda Land cover map of 1984 
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Fig. 7. Gelda Land cover map of 2000 

 
Fig. 8. Gelda Land cover map of 2016 

 
Table 4. Summaries of land cover classes fromb1984 -2016  

  1984 2000 2016 
LU classes Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%) 
Forest land 738.83 16.49 612.32 13.67 376.16 8.40 
Bush/shrub land 1020.42 22.78 693.78 15.49 548.64 12.25 
Grazing land 1064.62 23.77 752.64 16.80 397.42 8.87 
Agricultural land 1640.84 36.63 2384.43 53.23 3084.49 68.86 
Built up Area 14.72 0.33 36.26 0.81 72.72 1.62 
Total 4479.43 100.00 4479.43 100.00 4479.43 100.00 

 
 
From this study, there has been a significant land 

use/land cover change in the watershed where the 
agricultural land increased from 36.63-68.86 % (1984-
2016) and the built-up area also increased from 0.33-
1.62 % (1984-2016) in 33 years at the expense of 
forest, bush, and grazing lands. This could be 
attributed to the increase in population that has 
increased the demand for agriculture. The forest land 
was decreased from 16.49%-8.40 % (1984-2016). The 
bush land was decreased from 22.78 %-12.25 % 
(1984-2016) and the Grazing land was decreased from 
23.77-8.87 % (1984-2016). This land use/land cover 
change may have effect on the hydrology of the Gelda 
catchment.  
 

3.3 Rate of land use/land cover change 
The magnitude of change is the degree of 

expansion or reduction in the land use/land cover 
changes size. A negative value represents a decreasing 
land use/land cover sizes/values while a positive value 
indicates an increasing land use/land cover 
sizes/values (Mahmud and Achide, 2012). The 
percentage change values between 1984-2000, 2000-
2016, and 1984-2016 from their initial (original) value 
and final value were calculated and described in Table 
7 using the following equation: R=(FV-IV) *100/FV. 
Where; R is the percentage rate (change) value 
between the two years, IV is the initial (referenced) 
year (1984 and 2000) value and FV is the final years 
(2000 and 2016) and/ (1984 and 2016) values. 

 
 

Table 5. Summary of LULC class rates from their original size 
LULC type Rate (1984-2000)  Rate (2000-2016) Rate (1984-2016) 
  area % area % area % 
Forest land -126.51 -17.12 -236.16 -38.57 -362.67 -49.09 
Bush/shrub land -326.64 -32.01 -145.14 -20.92 -471.78 -46.23 
Grazing land  -311.98 -29.30 -355.22 -47.20 -667.20 -62.67 
Agricultural land 743.59 31.19 700.06 22.70 1443.65 46.80 
Built up area 21.54 59.40 36.46 50.14 58.00 79.76 
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From this study, the agricultural land rated by 
46.8 % from 36.63 % in 1984 to 68.86 % in 2016 and 
the built up area also rated by 79.8 % from 0.33 % in 
1984 to 1.62 % in 2016 in 33 years at the expense of 
forest, bush, and grazing land whereas the forest land 
was adversely rated by 49.1 % from 16.49 % in 1984 
to 8.40 % in 2016, the Grazing land was also adversely 
rated by 62.7 % from 23.77 % in 1984 to 8.87 % in 
2016, and the bush land was adversely rated at the 
same time by 46.2 % from 22.78 % in 1984 to 12.25 % 
in 2016 from their original size in 1984 and final size 
in 2016 (Table 4 and Table 5). This land use and land 
cover change may have effect on the hydrology of the 
catchment (Gelda watershed at Gelda River).  
3.4 Change Detection Analysis 

In order to determine the quantity of conversions 
from a particular land cover to another land cover 
category and their corresponding area over the 
evaluated period, the land use/land cover change 
detection based on remote sensing images have been 
widely applied in this research for LU/LC change, 
natural resource management and environment 

monitoring & protection (Zhang et al., 2014). In this 
study, the land use/land cover change detection 
statistics was done using ENVI 5.1 software. In order 
to get and show a significant change, the time between 
1984 and 2016 was done in 33 years (Figure 10 and 
Table 6).  

 

 
Fig. 9. Change detection analyses between 1984 and 
2016  

 
Table 6. Change detection analyses between 1984 and 2016 

Class_1984 Class_2016 Area (Ha) (%) Class_1984 Class_2016 Area (Ha)   (%) 
Agriculture Agriculture 1613.84 36.03 Built up  Forest 0.64 0.01 
Agriculture Built up 11.81 0.26 Built up  Grazing  0.62 0.01 
Agriculture Bush  4.63 0.10 Forest  Agriculture  346.59 7.74 
Agriculture Forest 3.58 0.08 Forest  Built up  4.85 0.11 
Agriculture Grazing 5.72 0.13 Forest  Bush  18.86 0.42 
Bush  Agriculture 479.76 10.71 Forest  Forest  359.67 8.03 
Bush  Built up  18.92 0.42 Forest  Grazing 7.66 0.17 
Bush  Bush 510.78 11.40 Grazing  Agriculture  641.67 14.32 
Bush  Forest 7.84 0.18 Grazing  Built up 27.42 0.61 
Bush  Grazing  3.84 0.09 Grazing  Bush  13.46 0.30 
Built up  Agriculture  2.62 0.06 Grazing  Forest 4.52 0.10 
Built up  Built up  9.72 0.22 Grazing  Grazing 379.20 8.47 
Built up  Bush  1.17 0.03 

    
Total 

     
4479.43 100.00 

 
From this study in the selected period 1984 to 

2016, the sum of forest land (7.74%), bush land 
(10.71%), and grazing land (14.32%) were 
significantly changed to agricultural land by 32.8 % 
whereas the sum of the forest land (0.11 %), bush land 
(0.42 %), and grazing land (0.61 %) were changed 
slightly to built-up area by 1.14 % due to increase in 
population size and expansion of their demands on 
relevant infrastructures and others and also the Built-
up area slightly changed to forest land (0.01%), bush 
land (0.03%), grazing land (0.01%) and Agricultural 
land (0.06%) due to dynamic human activities like 
shifting of settlement area from their original piece of 
land to another one. In general; this result due to land 
use/land cover change may have effect on the 

hydrology of the catchment and alarming to the society 
that they are living in and around the watershed (Fig. 
10 and Table 6). 
3.5 Sensitivity Analysis, Calibration and Validation 
3.5.1. Sensitivity Analysis 

The sensitivity analysis was needed to determine 
the most sensitive parameters in the Gelda watershed 
for the calibration process using simultaneous analysis 
method. In this analysis for this study, varying and 
adjusting all parameter minimum and maximum values 
at the same time before running. After 50 to 1000 
iterations were done, ten most sensitive parameters 
were selected and used during the calibration as well 
as validation process including Parameter sensitivity 
ranks (Table 7).  
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Table 7. Final Parameter sensitivity analyses and their rank 

Parameter Name t-Stat  P-Value Fitted Value Min. value Max. value Sensi. rank 
R__CN2.mgt -5.35 0.00 0.05 -0.20 0.20 1 
V__GW_DELAY.gw -1.89 0.06 158.10 30.00 450.00 2 
R__SOL_AWC (1).sol 1.88 0.07 -0.54 -1.00 1.00 3 
V__ALPHA_BF.gw -1.80 0.07 0.11 0.00 1.00 4 
V__ESCO.hru 1.09 0.28 58.29 -1.00 100.00 5 
V__REVAPMN.gw 0.93 0.35 4545.00 0.00 5000.00 6 
V__RCHRG_DP.gw -0.82 0.41 76.33 10.00 100.00 7 
V__GWQMN.gw -0.70 0.49 0.66 0.00 2.00 8 
V__GW_REVAP.gw -0.63 0.53 82.09 10.00 100.00 9 
V__CH_K2.rte -0.25 0.80 8.32 1.00 20.00 10 

 
 
r_, means the existing parameter value which is 

multiplied by (1+a given value), v_, means the default 
parameter value which is replaced by a given value, 
a_, means a given quantity that is added to the default 
value (Sellami et al., 2014). Table 7 gave the summary 
of the most sensitive parameters; their final range 
given by the last iteration in SUFI-2, the fitted values 
and the sensitivity rank. Parameter ranking is based on 
the t-stat and the p-value in the SUFI-2 program. T-test 
gave a measure of the sensitivity that means the larger 
the t-stat in absolute value, the more sensitive the 
parameter is while the p-value determined the 
significance of the sensitivity and P-values closed to 
zero are more sensitive that means the smaller the p-
value, the more sensitive the parameter is (Abbaspour, 
2013). 
3.5.2. Calibration and Validation 

Next to sensitivity analysis, model calibration 
was done by adjusting minimum and maximum values 
of each parameter, more iteration was done to fit good 

simulation. Calibration covers two third of the total 
sample data. In this study, there was 33 stream flow 
sample data (1984-2016) then the calibration covers 20 
years starting from the year 1987-2006. Validation was 
also done without adjusting the minimum and 
maximum value of each parameter and covers one 
third of the total sample data. In this study, the 
validation covers 10 years from the year 2007-2016.  
3.5.2.1. Average Monthly Calibration and 
Validation 

Average Monthly Calibration: the average 
monthly calibration (Figure 11) showed that, the 
percentage bias is 0.08, the objective function which is 
the Nash-Sutcliffe coefficient (NSE) is 0.81 and the 
goodness of fit between the measured and the 
simulated coefficient of determination (R2) is also 
0.86. The result of calibration for monthly stream flow 
showed that, there is a good agreement between the 
measured and simulated average monthly flows. 

 

 
Fig. 10. The result of calibration for average monthly stream flows 

 
 

Average Monthly Validation: The average 
monthly Validation (Figure 12) showed that, the 
percentage bias is 0.11, the Nash-Sutcliffe coefficient 
(NSE) is 0.78 while the goodness of fit between the 

measured and the simulated coefficient of 
determination (R2) is also 0.88. The result showed the 
good agreement of simulated and observed Average 
monthly flow. 
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Fig. 11. Average monthly validations for stream flows 

 
The above hydrographs (figures 11 and figure 

12), showed the under prediction of the model 
(because observed stream flow values are greater than 

simulated one) and the difference between observed. 
This could be due to the missing data technique that 
was nearby station method on flow data type.  

 
Table 8. Summary of Calibrated and validated values 

Model Evaluator 
Calibration Validation 
Daily Monthly Daily Monthly 

PBIAS 12% 8% 14% 11% 
NSE 75% 81% 72% 78% 
R2 79% 86% 76% 88% 

 
 
3.6 Evaluation of Stream Flow due to LU/LC 
Change dynamics (1984-2016) 

After calibration and validation of the model, 
evaluation of stream flow was done to quantify the 
variability of stream flow due to the change of land 
use/land covers. There was high expansion of 
cultivated land in the expenses of forest; bush and 
grazing lands during the study periods were 
considered. The evaluation was done in terms of the 
impact of land use and land cover changes on the 
seasonal stream flow and variations on the major 
components of stream flow including surface runoff, 
and groundwater flow during from1984 to 2016. Land 
use/land cover has a great influence on the rainfall-
runoff process due to forest and bush land covers 
reduction followed by infiltration and percolation 
reduction. This influence causes raise of run off in wet 
season and reduces stream flow in dry seasons.  

To evaluate the variability of stream flow due to 
land use/land cover change from 1984 to 2016, three 

independent simulation runs were conducted on a 
yearly basis keeping the most sensitive input 
parameters unchanged. Seasonal stream flow 
variability of 1984, 2000 and 2016 due to the land 
use/land cover change was assessed and comparison 
were made on stream flow based on observed data, and 
both surface runoff and ground water flow 
contributions to stream flow were based on SWAT 
output data after simulation using SWAT viewer. An 
observed inputs and outputs were compared and the 
flow was changed during the wettest months of stream 
flow taken as (June-September) and the driest stream 
flow were considered in the months of (January-April) 
were calculated and used as indicators to estimate the 
effect of land use/land cover change on Gelda stream 
flow. This evaluation was mainly done on seasonal 
stream flow, annual surface runoff (SURQ), and 
annual ground water flow (GWQ) independently. 

3.6.1. Change evaluation in Seasonal Stream flow 

 
Table 9. Mean seasonal wet and dry stream flow and their variability 

Different years of LU Mean Seasonal flow (m3/s)  Changes (m3/s)   

  
Wet months Dry months 

Wet Percent Dry Percent 
(Jun-Sept) (Jan- Apr) 

LULC map of 1984 64.36 3.18 - - - - 
LULC map of 2000 92.42 2.23 28.06 43.6% -0.95 -29.87% 
LULC map of 2016 128.68 1.07 36.26 39.23% -1.16 -52.02% 
*The negative (-) sign indicates the decreased values 
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Based on the observed data, the mean seasonal 

stream flow for wet months had increased from 64.36 
to 92.42 m3/s by 43.6% from 1984 to 2000 and from 
92.42 to 128.68 m3/s by 39.2 % from 2000 to 2016 
due to reduction of forest and bush covers on the 
watershed and this allows high runoff in wet season 
whereas the mean seasonal stream flow for dry season 
had decreased from 3.18 to 2.23 m3/s by 29.9 % from 
1984 to 2000 and 2.23 to 1.07 m3/s by 52.0% from 
2000 to 2016 during the 1984 to 2016 periods due to 
increase in temperature and evapotranspiration related 
with forest and bush cover reduction on and around the 
watershed. This may have adversely resulted on stream 
flow reduction in dry months. Generally; the rate of 
stream flow has increased in wet season from 1984 to 

2016 by 64.32m3/s (50 %) while the rate of stream 
flow has reduced in dry season from the period 1984 to 
2016 by 2.11m3/s (66.4%). These two results may 
have alarm to all stockholders in the study area (Table 
9).  
3.6. 2. Change evaluation in annual Surface Runoff 
and ground water flow 

Change evaluation analysis was made on the 
surface runoff (SURQ) and ground water flow (GWQ). 
Table 12 describes the SURQ and GWQ of the stream 
simulated using 1984, 2000 and 2016 land use/land 
cover maps for each period annually. These values 
were calculated from the SWAT outputs (simulations) 
using SWAT Viewer software on annual basis for the 
selected years 1984, 2000, and 2016, respectively. 

 
 

Table 10. Annual SURQ and GWQ of the stream from simulated values 

D/t years of LU SURQ (mm) GWQ (mm) Change 

   
SURQ (mm) Percent GWQ (mm) Percent 

LULC map of 1984 241.54 68.47 - - - - 
LULC map of 2000 318.12 51.21 76.58 24.10% -17.26 -25.2% 
LULC map of 2016 436.89 30.58 118.77 27.20% -21.63 -40.3% 
*The negative (-) sign indicates the decreased values  

 
 
The SWAT output shows that, the contribution of 

surface runoff has increased from 241.54 to 318.12 
mm from 1984 to 2000 by 24.1 %, and from 318.12 to 
436.89 mm by 27.2 % from 2000 to 2016 due to 
expansion of deforestation, expansion of built up area, 
and increase in soil compactness whereas the ground 
water flow has decreased from 68.47 to 51.21 mm by 
25.2 % from 1984 to 2000 and from 51.21 to 30.58 
mm by 40.3 % from 2000 to 2016. These results were 
created due to decrease in infiltration followed by 
percolation, increase in surface runoff, increase in 
legal/illegal abstraction of ground water, and others 
gradually occurred in the year between 1984 and 2016. 
The rate of groundwater flow has decreased from 1984 
to 2016 by 37.89 mm (55.3%) whereas the surface 
runoff has increased by 195.35mm (44.7%). These 
results may have alarm to all stakeholders in and 
around the Gelda watershed.  

Generally, the hydrological investigation with 
respect to the land use/land cover change within Gelda 
watershed showed that the flow characteristics have 
changed significantly, with increase in surface flow 
(during wet season) and reduce base flow (in dry 
season) during this study period from 1984 to 2016 
over 33 years.  
 
4. Conclusions  

This study has addressed the impact of LULC 
change on Gelda watershed over 33 years using 

Landsat images. The classification of LULC were 
performed and also the stream flow calibration and 
validation were done This study showed that LULC 
change in Gelda watershed from the period1984 to 
2016 were identified from satellite images. The LULC 
maps of the year 1984, 2000 and 2016 were prepared 
and the accuracy assessments of these three maps were 
checked using the confusion matrix. On the other 
hand, sensitivity analysis, calibration, validation and 
evaluation of model performance were performed on 
the selected models (Arc SWAT and SWAT-CUP).  

From the LULC change analysis, it can be 
concluded that the LULC of the Gelda watershed for 
the period of 1984 to 2016 showed significantly 
changed. Agricultural land was extremely changed 
from 36.63 % to 68.86 % (1984-2016). The expansion 
of agricultural land and small town have an impact on 
the reductions of forest and bush lands. Thus, the 
forest land decreased from 16.49 % to 8.40 % (1984-
2016). Cultivated and built up areas increased from 
36.63 % to 68.86% and 0.33% to 1.62% (1984-2016), 
respectively in the last 33 years.  

In the change detection analysis from this study 
between 1984 and 2016, the sum of forest, bush, and 
grazing lands were significantly changed to 
agricultural land by 32.77% whereas the sum of the 
forest, bush, and grazing lands were changed slightly 
to built-up area by 1.14 % due to increase in 
population size and expansion of their demands on 
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relevant infrastructures and others. This result due to 
LULC change may have effect on the hydrology of the 
Gelda catchment and alarming to all stakeholders.  

The sensitivity analysis using SWAT-CUP model 
was identified ten most sensitive parameters that 
control the stream flow of the studied watershed. The 
daily model performance was done with PBIAS, NSE, 
and R2 of 0.12, 0.75, and 0.79 values for calibration, 
respectively and 0.14, 0.72, and 0.76 for validation, 
respectively. Monthly model Performance for both 
calibration and validation were done with objective 
functions of PBIAS, NSE, and the coefficient of R2 
values of 0.08, 0.81, and 0.86 for calibration, and 0.11, 
0.78, and 0.88 for validation, respectively. 

LULC changes recognized to have major impacts 
on hydrological processes, such as stream flow, 
surface runoff, and groundwater flow. The result of the 
model for all land use/land covers (1984, 2000 and 
2016) indicated that:  

 The mean seasonal stream flow for all LULC 
maps were rated by 50.4% in wet seasons whereas in 
dry seasons, rated by 65.6% from 1984 to 2016.  

 The annual surface runoff for all LULC maps 
was rated by 44.6% whereas the annual ground water 
flow was rated by55.1% from 1984 to 2016.  
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