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Abstract: In this article, we analyzed the mathematical model of Bessel beamformer with least mean square (LMS) 
beamforming algorithm along with its efficiency in terms of directive gain, minimum mean square error (MMSE), 
angular resolution and convergence rate in presence of one desired user and two interferers operating with same 
carrier frequency but in different direction. Based on simulation results, Bessel beamformer provides cost effective 
solution with 2 dB improvements in terms of gain by suppressing interference, almost zero minimum MSE as 

compared to LMS (3.7*
410 ), -40 dB null depth performance, 60 dB angular resolution with respect to LMS (70 dB) 

when spacing between elements is taken as 0.25λ. Bessel beamformer can accommodate more users in real time 
base stations of mobile communication system when employ in smart antenna array system.  
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1. Introduction 

It is usually considered that Bessel functions are 
only useful for the solution of partial differential 
equations [B.G. Korenev 2002] whereas the 
application of Bessel functions is many more to solve 
the real world problems such as in signal processing 
its utility is not limited to FM synthesis, sampling, 
Kaiser window, Bessel filter but also in other areas of 
engineering sciences includes propagation of 
electromagnetic waves in waveguides, acoustical 
vibration etc. Bessel beamformer [M Yasin et al. 
2010] is based on Bessel functions which are usually 
known as cylinder functions, or occasionally, 
functions of Fourier-Bessel. A Fourier-Bessel (FB) 
function generates FB series which converges 
absolutely [G. N. Watson 1995]. In [Smith, L.M. 
2009], a method is presented for generating a 
maximally-flat chirp signal whose discrete values of 
samples are calculated using the nth-order Bessel 
function at a fixed argument and the utility of these 
signals is demonstrated by their application to the 
spectral analysis of audio systems. In [Nikolaos E. 
Myridis et al. 2001], a theorem based on the nth order 
FB series expansion using Bessel function is 
developed which can be employed in diverse areas of 
signal processing, information representation, 
communications system. Coding of speech signals 
using Bessel functions as orthogonal signals in the FB 
expansion has been explored in [K. Gopalan 2001] 
and it is found that speech quality and the bit rate 
increase when higher number of FB coefficients is 
used. In [D. Saxena et al. 2002], frequency 
modulation (FM) signals using the Bessel function 

have been analyzed in order to determine the 
amplitudes of the available sidebands and thereby the 
bandwidth. It is extremely useful for efficient FM 
transmission as employed in mobile and other 
commercial communication services. In [Elisabet 
Tiana Roig 2009], a problem of practical interest is 
addressed for outdoor acoustic measurements to 
estimate the noise contributions from different 
directions around the measurement point by means of 
microphone/circular arrays using Bessel and 
Neumann functions in combination with proper signal 
processing techniques. In [T. D. Abhayapala 2008], a 
generalized framework to decompose a sourcefield 
into its spatial and frequency components using a 
spherical microphone array employing spherical 
Bessel functions. A new method for time-frequency 
representation (TFR), which combines the FB 
transform and the Wigner-Ville distribution (WVD), 
is presented in [Ram Bilas Pachori et al. 2006]. In this 
FB transform decomposes a multi-component signal 
into a number of mono-component signals, and then 
the WVD technique is applied on each component of 
the composite signal to analyze its time-frequency 
distribution (TFD). A particular application where this 
method will be useful is speech analysis, because 
speech can be modeled as a sum of AM and FM 
signals corresponding to formant frequencies. One of 
the main objectives of this method in the analysis of 
speech signals is to estimate the formant frequencies. 
This method is more advantageous over the technique 
based on the filter bank approach [M. J. Narasimha et 
al. 2002], because here, there is no need of any prior 
information about the frequency-band of the signal. 
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Whereas utilizing the spherical Bessel functions for 
pattern synthesis of linear antennas [Hsien-Peng 
Chang et al. 2000], which leads to antenna current 
distribution by the Legendre polynomials of the first 
kind as, they are easy to compute numerically.  

In case [M Yasin et al. 2010], the researchers 
have used Bessel functions of the first kind in order to 
compute adaptive weights so that it minimizes the cost 
function for spatial filtering i.e. beamforming [M 
Yasin et al. 2011, S.F. Shaukat et al. 2009, Raja 
Muhammad Asif Zahoor et al. 2009].  

This research is the extension of previous work 
reported in [M Yasin et al. 2010], whereas in the 
present study we investigate its complete 
mathematical model and compared with LMS for its 
efficiency in terms of directive gain, MMSE, angular 
resolution and convergence rate in a scenario of one 
desired user and two interferers operating with same 
carrier frequency but in different direction.  

The next section describes the material and 
methods. Section 3 displays simulation results. 
Section 4 includes discussions. Finally, section 5 
concludes the paper. 

  
2. Material and Methods  

Smart antenna array system consists of number 
of elements, having uniform distance between each 
two elements and equipped with digital signal 
processor containing adaptive beamforming 
algorithms i.e. Bessel beamformer and LMS as shown 
in Figure 1.  

 

 
Figure 1. Smart adaptive antenna array system 
 
These adaptive beamforming algorithms are used 

to update the weights dynamically so that mean square 
error is reduced and signal to noise ratio (SNR) of the 
desired signal is optimized. Smart antenna array 
system is the combination of adaptive signal processor 
and antenna array system as said before is used for 

achieving optimum gain. The proposed algorithm is 
based on the Bessel function of the first kind [John G. 
Proakis et al. 2009, J. Schroeder 1993] and provides 
computationally efficient adaptive weights calculation 
[M Yasin et al. 2010]. This is used for implementation 
of Beamforming therefore it is named as Bessel 
beamformer. The proposed algorithm finds the 
minimum of MSE and thus yields the set of optimum 
weights of the beamformer. 
2.1. Bessel Beamformer 

The proposed algorithm finds the minimum of 
MSE and thus yields the set of optimum weights of 
the beamformer. Now consider a linear Bessel 
beamformer using multiple inputs at its array’s 
elements as shown in Fig. 1 then its output will be  

( kk ky 
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TX W )  

The expression ( kk

^
TX W )  means that an outer 

product which yields not a scalar but a matrix where 
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W W  is the initial estimate weight vector 
which equals to the product of starting weight vector 
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where v  denotes the order of the Bessel function 

of the first kind and must be a real number. The 

number of elements in array is presented by N  and 
  is the gamma function. 

Bessel function can be written using power 
series method known as the Frobenius method [Arthur 
L. Schoenstadt 2006] which yields general power 
series  
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From this, we simply assert that only one 
linearly independent power series solution exists. 

The function represented by this series is 
conventionally referred to as the Bessel function of 
first kind. 

Bessel function can be shown to converge at all 
values of N. This is an alternating term series and 
displays the characteristic of oscillating waves, i.e. 
they change sign every term. As the terms alternate, 
the errors in approximating this series by partial sums 
are reasonably easy to monitor and control. Therefore 
multiplication of this series with weight vector helps 
the proposed algorithm to converge efficiently [Arthur 
L. Schoenstadt 2006]. 

As a practical matter, Bessel function is useful 
primarily when N is small. Therefore, mathematicians 
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have devoted significant efforts to develop simple 
expressions, commonly called asymptotic formulas, 
which give approximate values for the various Bessel 
functions - values that become more and more 
accurate the larger N is. The most widely used 
approximation is given by asymptotic expansion 
which generates many roots like sine and cosine that 
geometrically convergent [Arthur L. Schoenstadt 
2006]. This property of Bessel function is important 
for our purpose as the Eigen values are related to such 
axis crossings (roots or zeros) which share with the 
sine and cosine property. 

Bessel function of the first kind is a 
mathematical function that generates an output array 
for each element of the input array [Mathnium.]. 
Occasionally Bessel functions are also known as 
functions of FB [G. N. Watson 1995]. It is important 
to note that initial estimate weight vector ideally has 
no impact on the end results. Bessel function of the 
first kind is a highly convergent series that helps the 
algorithm to converge efficiently to compute the array 
factor [Constantine A. Balanis 2005]. Bessel functions 
are Eigen functions which are all mutually orthogonal. 
To use the orthogonality property for determining 
each of the coefficients that make the infinite series as 
a whole conform to the initial conditions. The infinite 
series is the solution of time-dependent problem 
involves a wave and forms a basis for series 
expansion, similar to Fourier series. Fourier series 
expresses a function in terms of frequency 
components. In applying Fourier series to signal 
processing, the individual terms should be what you 
would get if you applied a narrow bandpass filter to 
the signal. The Eigen functions may have little 
physical significance and are really just useful 
mathematical tools, because of the property of 
orthogonality [K. Gopalan. 2001, B. Widrow et al. 
1985, Simon Haykin. 2002, Sasa Nikolic et al. 2010]. 
Bessel beamformer employing Bessel functions have 
the ability to discriminate between the desired signal, 
noise and other unwanted components using the 
principle of orthogonality. Because of this property 
desired user and interferer are orthogonal; therefore 
we can achieve perfect recovery at the receiver. 

The signal array vector received on the elements 
of antenna is written by 

1 2[ , ,....., ]T
k Mx x xX

 
As signal array vector consists of desired and 

other interfering signals [Linrang Zhang et al. 2004], 
therefore it can also be written as 
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where ds  and is  are the desired and interfering 

signals arriving at the array at an angle d  and i  

respectively. L  is the number of interfering signals 
and n  is a white and zero mean complex Gaussian 

noise at the array elements. ( )da   and ( )ia   are the 
steering vectors for the desired and interfering signals 
respectively. The steering vector is described as 
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 is the phase shift observed 
at each sensor due to the angle of arrival of the wave 

front and assume d  is the uniform distance between 

array elements. 
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Therefore, the steering vector can be written as 
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The error signal used for adjustment of adaptive 

system by optimizing the weight vector is given by 

k k ke d y   

putting value of ky  in this equation and 
differentiate w.r.t. weight w , then we have 
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putting this value in the gradient estimate of the 

form giving by 
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From steepest decent method [B. Widrow et al. 

1985, chap 2 (2.35) and 4 (4.36)], [T. Schirtzinger et 
al. 1995] which is being used for developing and 
analyzing a variety of adaptive algorithms, we have  

^

kk k   +1W W  
putting value of gradient estimate, we get 

2 ( )k k k v ke J N +1W W X
 

where 


 is the step-size that can be varied 
between 0 and 1. This is the required weight vector 

using Bessel function of first kind ( )vJ N  for Bessel 

beamformer where 


 is a constant used for stability 
of adaptation which is also known as gain constant. If 
we compare weight vector of Bessel beamformer with 
LMS, it is apparent that this equation is similar in 

form but with an additional parameter 
( )vJ N

.  
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Flow chart of the proposed Bessel beamformer 
[M Yasin et al. 2010] is given in Figure 2 as appended 
below for easy understanding and implementation. 

The proposed Bessel beamformer has same 
feedback error which is used for each correlation loop 
for its adaptation. 

In loop No. 1, the Bessel function interacts with 
signal induced on array’s element No. 1 and weight of 
this loop is adapted accordingly by its own correlation 
loop. The output of this loop is coupled to the 
summer. This output of the summer is compared with 
desired signal (d) and error is generated. This error is 
used as a feedback to control the loop for updating the 
weight vector. Similarly in the loop No. 2 to the last 
loop of beamformer, the above stated process is 
repeated. 

It means that the Bessel function interacts with 
each signal induced on array’s elements separately 

and each weight ( k+1W ) of the Bessel beamformer is 
being adapted by its own correlation loop. It is to be 

noted that all weights ( k+1W ) of the Bessel 

beamformer use the same feedback error ( ke
) to 

control/update their loops. Therefore it can be said 
that the combine effect of Bessel function with signals 
produces optimum weights so that MSE is minimized 
and output of the beamformer is enhanced in terms of 
gain/SNR. 

The proof for decorrelation between the error 
signal and input signal of Bessel beamformer can be 
computed from the error signal as given by 

( ( )T
kk k k k k v ke d d J N   

^
TX W ) X W  

Multiplying both sides by kX
, then we have 

( )T
k k k k k k v ke d J N X X X X W

 
Take expected value on both sides 
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k kW W
,
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and 

[ ]T
k kR E X X

 then we have 
*[ ] ( )k k v kE e P RJ N X W
 

where R  is the autocorrelation matrix 
describing correlation between various elements of 

signal array vector and P  is the cross correlation. 
The optimum weight vector for Bessel 

beamformer is derived from gradient estimate and is 
given by  

* 1 ( ( ))
( ( ))

T
k vT

v

P
PR J N
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putting this values in 

1[ ] ( )( ( )( ( )) )T
k k v vE e P P RR J N J N  X  

 

 
Figure 2. Flow chart of proposed Bessel beamformer 

 
As per mathematical assumptions 

1 1( ) ( )T TA A A     and 
1AA I   then we have 

1[ ] ( )( ( )( ( )) )k k v vE e P P I J N J N  X
 

[ ] ( )( )k kE e P P I I X  
[ ] 0k kE e X  

It is proved that error signal is uncorrelated with 
(or orthogonal to) the input signal. This result shows 
that impulse response/weight function of a Bessel 
beamformer is optimized and it gets validation from 
well known result of Wiener filter theory [John G. 

Proakis et al. 2009, chap 13, (13.2.10)  and (13.2.11) ], 

[B. Widrow et al. 1985, chap 2 (2.39) ] and [Simon 

Haykin. 2002, chap 2,
(2.13)

]. 
2.2. Least Mean Square Algorithm 

The algorithm is based on the estimate of the 
gradient vector that uses available data for this 
purpose [S.F. Shaukat et al. 2009, Raja Muhammad 
Asif Zahoor et al. 2009, B. Widrow et al. 1985]. The 
algorithm makes successive corrections to the weight 
vector in the direction of the negative of the gradient 
vector which finally concludes to minimum MSE. The 
weight vector for LMS algorithm is defined by  

2k k k ke +1W W X  
The weight vector of LMS algorithm is look 

similar in form as weight vector of Bessel beamformer 

but with an additional parameter 
( )vJ N

. 
The optimum weight vector for LMS algorithm 

is given by  
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* 1
k

P
w PR

R
 

 
where R  is the cross correlation and P  is the 

autocorrelation between desired signal and input 
signals respectively. 

 
3. Simulation Results  

The simulations are designed to analyze the 
properties of Bessel beamformer and LMS algorithms. 

The desired signal is phase modulated with 20SNR   
dB, used for simulation purpose. It is given by  

sin( )( ) j tS t e    

where  is the phase angle of the applied signal. 
3.1. Gain Enhancement by Smart Antenna Array 

The uniform linear array is taken with 8N   
and distance between two elements is maintained as 

/ 2 . Five hundred samples are taken for simulation 
purpose. The angle of arrival (AOA) for desired user 
is 0 degree and two interferers are placed at -30 and 
60 degrees to judge the efficiency of algorithms under 
study. The linear array factor is shown in Figure 3. 
The beam width is measured between the first two 
nulls of the array response function. The desired 
signal and interferers are received by an array of 8 
elements with 8 weights. It is observed that the array 
directivity increases with the number of elements but 
at the same time number of side lobes also increases. 
The directivity of Bessel beamformer and LMS 
algorithms are observed as 20 dB and 18 dB 
respectively which clearly indicates 2 dB gain 
improvements of Bessel beamformer over that of 
LMS algorithm, by suppressing interference. Both 
algorithms have their main beam towards the desired 
direction. The ratio between the powers of the main 
lobe and the first side lobe is 6.22 dB and 5.25 dB for 
Bessel beamformer and LMS algorithms respectively. 
It is ascertained that Bessel beamformer is giving 2 
dB gain improvements over that of LMS. 

When space between two elements is kept as 
/ 4  for same number of elements with -10 degrees 

AOA for desired user as shown in Figure 4. Two 
interferers are placed at an angles -40 and 30 degrees. 
The performance of Bessel beamformer is quite 
obvious than that of LMS as Bessel beamformer 
places correct null towards an interferer at angle -40 
degrees. Subsequent data obtained from Figure 4 is 
given in Table 1 which clearly indicates that Beam 
width/angular resolution for Bessel beamformer and 
LMS is 60 dB and 70 dB as the beam width is 
measured between the first two nulls of the array 
response function. 

 
Figure 3. Array factor for Bessel beamformer and 
LMS algorithms with AOA for desired user is 0 
degree with two interferers at an angles -30 and 60 

degrees with constant space of / 2  between 

elements for 8N   
 

 
Figure 4. Array factor for Bessel beamformer and 
LMS algorithms with AOA for desired user is -10 
degrees with two interferers at an angles -40 and 30 

degrees with constant space of / 4  between 

elements for 8N   
 
The ratio between the powers of the main lobe 

and the first side lobe is 5 dB and 8 dB for Bessel 
beamformer and LMS algorithms respectively. 
Therefore the performance of Bessel beamformer is 
bettering terms of gain (2 dB), angular resolution (60 
degrees) and Sidelobe Level (5 dB) over that of LMS 
algorithm. 
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Table 1. Performance Analysis of Algorithms under 
study 

Algorithms LMS 
Bessel 
beamformer 

Input parameters 
Element Spacing 0.25 0.25 
AOA (degree) -10 -10 
No. of Elements 8 8 
No. of two interferers 2 2 
Output parameters 
Beam width (degree) 70 60 
Null depth performance (dB) 4 -40 
Sidelobe Level (dB) 8 5 
 
3.2. Mean Square Error Performance 

The MMSE describes the performance of the 
given system. An adaptive beamformer like Bessel 
beamformer or LMS combines the signals received by 
different elements of smart antenna array to form a 
single output. This is achieved by minimizing the 
MSE between the desired output and the actual array 
output. The minimum MSE for both these algorithms 
are shown in Figure 5.  

 

 
Figure 5. Mean Square Error performance for Bessel 

beamformer and LMS algorithms for 8N   
 
It indicates that Bessel beamformer has 

minimum MSE (almost zero) as compared to LMS 

(3.7*
410 ) when measured after 500 iterations. 

Therefore it is proved that performance of Bessel 
beamformer is better over that of LMS. Initially, both 
algorithms starts from lower value i.e. (almost zero) 
and after 200 iterations LMS gets start to obtain 
higher values whereas MMSE for Bessel beamformer 
is same and seems stable. 
3.3. Weight Convergence Performance 

Correct and fast convergence is also one of the 
performance criteria. The weights value obtained at 
minimum MSE are the optimum weights that 

minimize the power in the error signal indicating that 
system output has approached the desired output as 
shown in Figure 6. 
 

 
Figure 6. Weight convergence plot for Bessel 
beamformer and LMS algorithms 

 
The weight values of both algorithms converge 

to their optimum values and have taken almost the 
same convergence path. The data given in Table 2 is 
extracted from Figures 3, 5 and 6. 

 
Table 2. Performance Analysis of Algorithms under 
study for System Throughput Estimate 

Algorithms LMS 
Bessel 
beamformer 

Input parameters 
Element Spacing 0.5 0.5 
No. of Sample 500 500 
AOA (degree) 0 0 
No. of Elements 8 8 
No. of two interferers 2 2 
Output parameters 
Beam width (degree) 36 36 
Array Gain (dB) 18 20 
Null depth performance (dB) 4 -40 

Minimum MSE 3.7*
410  0 

Sidelobe Level (dB) 5.25 5.29 
Convergence rate (S) 0.047 0.095 

 
The convergence rate for Bessel beamformer and 

LMS is found 0.0959 and 0.0474 S respectively at 500 
iterations. Therefore LMS is slightly faster over that 
of Bessel beamformer. 

 
4. Discussions  

The detailed analysis is carried out for both 
algorithms which includes the signal recovery, 
suppression of interference, performance analysis in 
terms of directive gain, beam width, beam steering 
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capabilities, reduction in MSE, null depth 
performance, Sidelobe level and convergence rate. 
The findings of simulation are: 

Bessel beamformer has more directive gain (2 
dB) over that of LMS algorithm, by suppressing 
interference as shown in Figure 3 and tabulated in 
Table 2. Therefore Bessel beamformer saves power 
because a directional gain of Bessel beamformer is 
maximum over that of LMS 

Bessel beamformer is giving -40 dB null depth 
performances over that of LMS as shown in Figure 4. 

Bessel beamformer has minimum MSE (almost 

zero) as compared to LMS (3.7*
410 ) when measured 

at 500 iterations. Therefore it is proved that 
performance of Bessel beamformer is better over that 
of LMS as shown in Figure 5. 

The convergence rate for Bessel beamformer and 
LMS is 0.0959 and 0.0474 seconds respectively when 
500 iterations are taken for simulation purpose. 
Therefore LMS is slightly faster over that of Bessel 
beamformer. 

Bessel beamformer is giving 60 dB beam 
width/angular resolution as compared to LMS (70 dB) 

when spacing between elements is taken as / 4  as 
shown in Figure 4 and tabulated in Table 1. 
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5. Conclusion 

Bessel beamformer provides: (1) 2 dB 
enhancements in gain by suppressing interference, (2) 
almost zero minimum MSE as compared to LMS 

(3.7*
410 ), (3) -40 dB null depth performance and (4) 

60 dB angular resolution with respect to LMS (70 dB) 

when spacing between elements is taken as / 4 . 
However the convergence rate of LMS is slightly 
lower (0.0474 sec) than that of Bessel beamformer 
(0.0959 sec). From these facts and figures, it is 
deduced that performance of Bessel beamformer is 
good over that of LMS algorithm which can increase 
capacity and quality of mobile communication 
systems when employ for smart antenna array system. 

 
References 
1. B.G. Korenev. 2002. Bessel Functions and Their 

Applications: Analytical Methods and Special 
Functions. CRC Press, Boca Raton, FL. 

2. M Yasin, Pervez Akhtar, M Junaid Khan, and 
S.H Zaheer Naqvi. 2010. Proposed Bessel 
Beamformer is a Better Option for Smart 
Antenna System for Capacity Improvement. 
World Applied Sciences Journal 10 (4): ISSN 
1818-4952, 433-439. 

3. G. N. Watson. 1995. A Treatise on the Theory of 
Bessel Functions. Birminghan, UK. 

4. Smith, L.M. 2009. Wideband Bessel Function 
Chirp Signals and their Application to the Test 
and Evaluation of Audio Systems. System 
Theory, 2009. SSST 2009. 41st Southeastern 
Symposium on, ISSN: 0094-2898, 355 – 359. 

5. Nikolaos E. Myridis, and Christodoulos 
Chamzas. 2001. 1-D Sampling Using 
Nonuniform Samples and Bessel Functions. 
IEEE Conf, Xanthi, 67100 GREECE, 242-246. 

6. K. Gopalan. 2001. Speech Coding using Fourier 
–Bessel Expansion of Speech Signals. 
IECON’01, (c) 2001 IEEE, 2199-2203. 

7. D. Saxena, Mridul Kumar Mathur, and Seema 
Loonker. 2009. Determination and Analysis of 
Sidebands in FM Signals using Bessel Function. 
IJECSE, ISSN 2277-1956, Vol. 1, No. 2, 
www.ijecse.org, 454-458. 

8. Elisabet Tiana Roig. 2009. Beamforming 
Techniques for Environmental Noise. Master’s 
Thesis, Technical University of Denmark. 

9. T. D. Abhayapala. 2008. Generalized 
Framework for Spherical Microphone Arrays: 
Spatial and Frequency Decomposition. ICASSP, 
(c) 2008 IEEE, 5268-5271. 

10. Ram Bilas Pachori, and Pradip Sircar. 2006. 
Analysis of Multiple Component Non-stationary 
Signals Using Fourier-Bessel Transform and 
Wigner Distribution. 14th European Signal 
Processing Conference (EUSIPCO 2006), 
Florance, Italy.  

11. M. J. Narasimha, A. Ignjatovic and P. P. 
Vaidyanathan. 2002. Chromatic Derivative Filter 
Banks. IEEE Signal Processing Letters, Vol. 9, 
No. 7, 215-216. 

12. Hsien-Peng Chang, Tapan K. Sarkar, and Odilon 
Maroja C. Pereira-Filho. 2000. Antenna Pattern 
Synthesis Utilizing Spherical Bessel Functions. 
IEEE Transactions on Antennas and 
Propagation, Vol. 48, No. 6, 853-859. 

13. M Yasin, Pervez Akhtar, and S.H Zaheer Naqvi. 
2011. Design and Performance Analysis of Blind 
Algorithms for Smart Antenna System Using 
Window techniques. Middle East Journal of 
Scientific Research 7 (4): ISSN 1990-9233, 458-
466. 

14. S.F. Shaukat, Mukhtar ul Hassan, R. Farooq, H. 
U. Saeed, and Z. Saleem. 2009. Sequetial Studies 
of Beamforming Algorithms for Smart Antenna 



 Researcher 2019;11(8)          http://www.sciencepub.net/researcher   RSJ 

 

81 

Systems. World Applied Sciences Journal 6 (6):, 
ISSN 1818-4952, 754-758. 

15. Raja Muhammad Asif Zahoor, and Ijaz Mansoor 
Qureshi. 2009. A Modified Least Mean Square 
Algorithm Using Fractional Derivative and its 
Application to System Identification. European 
Journal of Scientific Research ISSN 1450 – 
216X, Vol. 35, No. 1, 14-21. 

16. John G. Proakis, and Dimitris G. Manolakis. 
2009. Digital Signal Processing, Principles, 
Algorithms, and Applications. Fourth Edition, 
Pearson Education Inc. 

17. J. Schroeder. 1993. Signal Processing via Fourier 
Bessel Series Expansion. Digital Signal 
Processing, Vol. 3, 112-124. 

18. Arthur L. Schoenstadt. 2006. An Introduction to 
Fourier Analysis Fourier Series, Partial 
Differential Equations and Fourier Transforms. 
Monterey, California 93943. 

19. Mathnium. A System for Numerical Computing, 
Data Analysis, and Graphics. 
http://www.mathnium.com/help/doc.html 

20. Constantine A. Balanis. 2005. Antenna Theory: 
Analysis and Design. McGraw-Hill Higher 
Education. 

21. K. Gopalan. 2001. Speech Coding using Fourier 
–Bessel Expansion of Speech Signals. 
IECON’01, (c) IEEE, 2199-2203. 

22. B. Widrow, and S.D. Stearns. 1985. Adaptive 
Signal Processing. Pearson Eduation, Inc. 

23. Simon Haykin. 2002. Adaptive Filter Theory. 
Fourth edition, Pearson Eduation, Inc. 

24. Sasa Nikolic, Antic D, Dankovic B, Milojkovic 
M, Jovanovic Z, and Peric S. 2010. Orthogonal 
Functions Applied in Antenna Positioning. 
Advances in Electrical and Computer 
Engineering, Vol. 10, No. 4, 1582-7445, 35-42. 

25. Linrang Zhang, H.C. So, Li Ping, and Guisheng 
Liao. 2004. Adaptive multiple-beamformers for 
reception of coherent signals with known 
directions in the presence of uncorrelated 
interferences. Signal Processing 84, 1861–1873. 

26. T. Schirtzinger, X. Li, and W. K. Jenkins. 1995. 
A Comparison of three Algorithms for Blind 
Equalization based on the Constant Modulus 
Error Criterion. 0-7803-2431-5/95/ supported by 
NSF and JSEP, IEEE. 

  
    

 
8/21/2019 


