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Abstract: Managers today are very interested in knowing the future purchasing pattern of their customers thereby 
providing little insight about individual-level shopping behaviour. Additionally, behaviour may evolve over time, 
especially in a changing environment. This research develops an individual-level model for customer store visiting 
behaviour based on buying-behaviour data from standard wholesales outlet. We capture cross-sectional variation in 
store-visit behaviour as well as changes over time as visitors gain experience with the store, as the composition of 
the customer population changes, the overall degree of buyer heterogeneity that each store faces may change. We 
also examine the relationship between visiting frequency and purchasing propensity. However, we also show that 
changes (i.e., evolution) in an individual’s visit frequency over time provides further information regarding which 
customer segments are more likely to buy. Rather than simply targeting all frequent shoppers, our results suggest 
that a more refined segmentation approach that incorporates how much an individual’s behaviour is changing could 
more efficiently identify a profitable target segment. 
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Introduction 

Researchers in marketing have used several 
different mechanisms to introduce these time-varying 
effects into the traditional stochastic modeling 
framework. For instance, Sabavala and Morrison 
(1981) incorporated nonstationarity by introducing a 
renewal process into a probability mixture model in 
accordance with the “dynamic inference” framework 
first set out by Howard (1965). Sabavala and 
Morrison applied this model to explain patterns of 
advertising media exposure over time; further 
applications of a similar type of renewal-process 
approach can be seen in Fader and Lattin (1993) as 
well as Fader and Hardie (1999).  

Specifically, our behavioural assumption is that 
customers’ underlying rates of buying are continually 
and incrementally changing from one visit to the next. 
As individuals adapt to and gain experience with the 
new retail environment, they may return to the store at 
a more frequent rate, a less frequent rate, or perhaps at 
the same rate for the next buying. By assuming that 

each individual will update her latent rate, i , after 
each buying, a very simple way to specify this 
updating process is as follows: 

  cijji .1  
   (1) 

Where ij  is the rate associated with individual 
i’s jth repeat visit and c is a multiplier that will update 

this rate from one visit to the next. If the updating 
multiplier, c, equals one, visiting rates are considered 
unchanging, and the stationary exponential-gamma 
would remain in effect. But if cis greater than one, 
shoppers are visiting more frequently as they gain 
experience, and if c is less than one, shoppers are 
visiting less frequently as they gain experience. 

However, using a constant multiplier to update 

the individual  ’s would be a very restrictive (and 
highly unrealistic) way of modeling evolutionary 
behaviour in a heterogeneous environment. A more 
general approach is to replace the scalar multiplier, c, 
with a random variable cij in order to acknowledge 
that these updates can vary over time and across 
people. Each individual visit will lead to an update 
that may increase, decrease, or retain the previous rate 
of visit, depending on the stochastic nature of the 
updating multiplier. 

To generalize (1) in this manner, we assume that 
these probabilistic multipliers, cij, arise from a gamma 
distribution, common across individuals and visits, 

with shape parameter s and scale parameter  . We 
choose the gamma distribution to describe the 
updating multiplier for the same reasons why we used 

it to describe the heterogeneity in  . It is a very 
flexible distribution that accommodates a variety of 
shapes. This gamma distribution essentially describes 
the nature of the behavioural evolution faced by a 
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given store. The updated  1ji  then becomes a 
product of two independent gamma-distributed 

random variables: the previous rate,  ij, and the 
multiplier, cij. The overall model, therefore, uses four 
parameters to simultaneously capture cross-sectional 
heterogeneity and evolving buying behaviour: two 

parameters (r and ) govern the gamma distribution 
that describes the initial heterogeneity in visiting rates, 

and another two parameters (s and ).  
Regardless of whether the multiplier is 

increasing (cij>1) or decreasing (cij< 1) a particular 
buying rate at a particular point in time, we expect 
that an individual’s value will evolve relatively slowly 
over time. This suggests that the updating gamma 

distribution, u (cij; s,  ), should have a mean fairly 
close to 1.0 but should also allow for more extreme 

increases or decreases in  at any given update 
opportunity. The spread of this updating distribution is 

directly tied to the magnitude of the s and 

parameters. As both of these parameters become 
large, the distribution degenerates towards a spike 

located at /s . Taken to the extreme (i.e., s and 

get extremely large), this model would then collapse 

into the deterministic updating model (1) with c= s/ 

.  
Finally, another interesting characteristic of the 

updating distribution is that it allows for customer 
attrition pattern, since the gamma distribution can 
yield a draw of cij extremely close to 0. When this 
situation arises, the customer effectively drops out and 
is unlikely to return to the store. Such attrition may be 
very common for websites and has been the 
centerpiece of other types of models in this general 
methodological area (Reinartz and Kumar 2000; 
Schmittlein, Morrison, and Colombo 1989). The fact 
that we can accommodate attrition in such a simple, 
natural manner is an appealing aspect of the proposed 
modeling approach. 
3. Likelihood Specification 

When estimating the ordinary (stationary) 
exponential-gamma model, there are two ways of 
obtaining the likelihood function for a given 
individual. The usual approach is to specify the 
individual-level likelihood function, conditional on 

that person’s (unobserved) value of  i. This 
likelihood is the product of Ji exponential timing 
terms, where Ji is the number of repeat buying made 
by panelist i, plus an additional term to account for the 
right-censoring that occurs between that customer’s 
last arrival and the end of the observed calibration 
period (at time T): 
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To get the unconditional likelihood we then integrate across all possible values of  , using the gamma 
distribution as a weighting function: 
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   (3) 

Where gamma ( i ; r,  ) denotes the gamma distribution as shown in (1). This yields the usual exponential-
gamma likelihood, which can be multiplied across the N panelists to get the overall likelihood for parameter 
estimation purposes: 
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  (4) 
An alternative path that leads to the same result is to perform the gamma integration separately for each of the 

Ji+1 exponential terms, and then multiply them together at the end. This involves the use of Bayes Theorem to 

refine our “guess” about each individual’s value of  I after each arrival occurs. Specifically, it is easy to show that 
if someone’s first repeat visit occurs at time tij, then: 

 
   0112 ,1at  arrival iiii ttrgamma tg  

    (5) 
 
The gamma distribution governing the rate of buying for subsequent arrivals follows: 
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     01 ,at  arrival iijijji ttjrgamma tg  
   (6) 

 
Using this logic, we can re-express the likelihood as the product of separate EG terms 
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  (7) 

which collapses into the same expression as (4). 

When we introduce the nonstationary updating distribution, the multipliers (cij) change the value of  I from 
visit to visit, thereby requiring us to use the sequential approach given in (7) to derive the complete likelihood 
function. We need to capture two forms of updating after each visit: one due to the usual Bayesian updating process 
(which is associated with stationary behaviour given by (6)) and the other due to the effects of the stochastic 
evolution process. Therefore, the distribution of buying rates at each repeat visit level is the product of two gamma 
distributed random variables – one associated with the updating multiplier and one capturing the previous visiting 
rate. For the case of panelist i making her jth repeat visit at time tij: 

        , . ,at   arrival 01 sgammattjrgammatG iijijji    (8) 
One issue with this approach is that the product of two gamma random variables does not lend itself to a 

tractable analytic solution. However, there is an established result (see, e.g., Kendall and Stuart 1977, p. 248) 
suggesting that the product of two gamma distributed random variables can be approximated by yet another gamma 
distribution, obtained by multiplying the first two moments about the origins of the original distributions: 
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As shown in Appendix A, this moment-matching approximation, used in conjunction with Bayesian updating, 

allows us to recover the updated gamma parameters that determine the rate of buying,  ij, for panelist i’s jth repeat 
visit as follows: 
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Where r (i, 1) and s (i, 1) are equal to the initial 

values of r and s as estimated by maximizing the 
likelihood function specified in (6). 

We performed 20 separate simulations to verify 
the accuracy of using such a moment-matching 
approximation. In each simulation, we first generated 
1000 random draws from a gamma distribution with 
randomly determined shape and scale parameters to 

represent initial   values. Then, a matrix of 
updating multipliers was also simulated for a series of 
five updates (i.e., five future repeat visits). Each 
1000x5 matrix was generated by taking draws from a 
gamma distribution, again with randomly determined 
shape and scale parameters, where columns one 

through five represented the updates after one to five 

visits. The updated  series after five repeat visits 
was calculated using two methods (1) direct 

(numerical) multiplication of the 1000 initial  ’s and 
the five updating series or (2) randomly drawing 1000 
values from the distribution resulting from the 
moment-matching approximation across all five 
updates. A Kolmogorov-Smirnov test of fit indicated 
that, for each of the 20 simulations, the distribution of 
values resulting from the moment-matching 
approximation is not significantly different from that 
resulting from the direct multiplication of these 
random variables. Therefore, we are confident that the 
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moment-matching approximation accurately captures 
the gamma distributed updating process we wish to 
model. 

After incorporating the evolution process into 
our model, the likelihood function to be maximized 
follows: 
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Where r (i, j) and  (i, j) are defined in equations (10) and (11) while the survival function, S (T-tij), is defined 
as: 
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For the special case in which behaviour is not 

evolving and the nonstationary updating distribution 
degenerates to a spike at 1.0  

(i.e., s =  = M, where M approaches infinity), 
then this equation collapses down exactly to the 
ordinary (stationary) exponential-gamma model. 

 
4. Data 

We apply the models described in the previous 
section to fruit juice data collected from a standard 
Departmental store retail outlet in Ibadan. For our 
purposes, we are interested in the dates of the visits 
each panelist makes to a given store. To consolidate 
the data just a bit, we aggregated buying behaviour to 
weekly level. For example, a shopper may leave a 
store briefly and return later that week. However, this 
second visit is unlikely to be considered a repeat visit 
but rather an extension of the first visit. Therefore, if a 
given panelist were to visit a particular store multiple 
times in a single week, we would encode that 
behaviour as just one visit for the day when the 
session began. Since we are interested in the timing 
and frequency of repeat buying, our dataset describes 
each customer as a sequence of weeks when buyers 
were made. All customers that have visited the store 
of interest at least once during the observation period 
were included in this dataset. We use data from two 
stores – selling juice drink and packed chicken. Fruit 
juice attracted 2,140 unique buyers during this six-
month period totaling 9,260 visits, while packed 
chicken had 975 visitors making 3,210 visits (refer 
back to Figure 1 and Table 1 for more detailed 
summaries of the data). 

 
5.  Model Results 

Before estimating the evolving visit model 
developed in §3, we first examine the static 
exponential-gamma timing model as a benchmark. 
When the static, two-parameter model is applied to 
the eight months of fruit juice buying behaviour data, 

we find that the mean rate of visit (E [ ]=r/ ) is 
0.0112. In other words, the expected intervisit time (1/

 ) is 89.3 days, which is high, but reasonably 
consistent with the summary statistics mentioned 
earlier. But beyond their ability to capture the mean of 
the heterogeneous visiting process, the model 
parameters also provide useful information about the 
nature of the distribution of visit rates across the 
population. With a shape parameter of 0.271 and a 
scale parameter of 42.955, the distribution of visiting 
rates can be described by the gamma distribution in 
Figure 3. This distribution has a large proportion of 
the population with very low rates of buying. The 
median rate, according to this model, is 0.005, 
corresponding to an buying rate- time of 200 days. 
This distribution of rates is very consistent with the 
observed histogram of visit frequency (Figure 1), 
suggesting that the stationary EG model provides a 
very good benchmark model for visit behaviour. 

A principal reason for these high expected 
buying rate is the fact that the stationary model does 
not allow shoppers to drop out and never return. As a 
result, a customer who has actually dropped out would 
be seen by the model as still being “alive,” but having 
a very slow visiting rate, since she would not have yet 
returned to the store by the end of the observation 
period.  

In Table 2, we contrast the parameter estimates 
and fit statistics for the static EG model with those 
from our four-parameter model of evolving visiting 
behaviour. Not only does the latter model fit the data 
better, but it also has more intuitively appealing 
results. While the basic shape of the gamma 
distribution for initial buying rates (shown in Figure 
4a) may appear to be similar to that of the static EG 
model, it is less dominated by low-frequency 
shoppers, leading to a substantially lower mean 

buying rate (52 days, E [ ] = 0.019). Likewise, the 

median buying rate shrinks to 167 days (median 
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= 0.006). These differences reflect the fact that 
dropout – or other types of evolution – can take place 

as the customer becomes more familiar with the 
product. 

 
Table 2. Model Results for Amazon 

 Stationary EG Model Evolving Visit Model 
R 0.483 0.324 
  42.955 16.857 
S  2.299 

   2.304 

   
LL -34,347.2 -33,648.0 
No. of parameters 2 4 
CAIC 68,711.17 67,296.0 
 

According to the evolutionary model, the mean 

update for any given visit (s/  ) is very close to one 
(0.998) suggesting, perhaps, that it is a fairly 
stationary process. However, a closer look at the 
distribution (see Figure 4b) shows that there is 
significant variance about this mean. Though the 
mean update is close to one, the distribution is quite 
skewed. With a median value of cij=0.858, buyers 
tend to return to the store at slower rates from visit to 
visit. The implications of these results are in stark 
contrast to the measures summarized in Table 1 that 
implied increased visiting frequency over time. 

Though other models have acknowledged the 
issue of nonstationarity, many of them have focused 
primarily on dropout (Eskin 1973, Kalwani and Silk 
1980, Schmittlein, Morrison, and Colombo 1989). 
These models allow for individuals to make several 
purchases, become disenchanted, and never purchase 
again. To test if the evolving visit model is capturing 
evolving behaviour over time in addition to a dropout 
phenomenon, we also estimated an exponential-
gamma model with a dropout component similar to 
that specified by Eskin (1973) and Fader and Hardie 
(1999). 

In the EG model with dropout, the probability of 
buying given that you are an active buyer is modeled 
as an exponential-gamma process. However, the 
probability of being an active buyer after the jth visit, 

j
, is determined by the following: 

 
 j

j e   1
  (14) 

where is the long run probability of a customer 

remaining active, and  is the rate at which the  
approaches this long run probability. Though the EG 
model with dropout provides a significant 
improvement in fit over the stationary EG model (LL 
= -33,804.7), it does not approach the performance of 
the evolving visit model which has the same number 
of parameters. 

This suggests that the evolving visit model is 
capturing a phenomenon in addition to just dropout. 
Validation 

While we have discussed the fact that the 
evolving visit model fares well on a relative basis 
compared with various benchmark models, we have 
yet to show that it performs sufficiently well on an 
absolute basis. In this section, we validate the 
evolving visit model by examining the accuracy of 
longitudinal forecasts. Because the evolving visit 
model relies on an approximation (9) to specify and 
estimate the model, we need to perform simulations to 
generate data for tracking/forecasting purposes. This 
is a straightforward and computationally efficient 
task. For each iteration of the simulation, we create a 
simulated panel that matches the actual panel in terms 
of its size and the distribution of its initial visit times. 
We then generate a sequence of repeat visits using the 
parameter estimates from the model. This requires us 

to maintain a time-varying vector of  ’s for each 
panelist, which starts with random draws from the 

initial (r,  ) gamma distribution, and then gets 

updated using the (s,  ) gamma distribution after 
each simulated exponential arrival occurs. We 
continue this process until every simulated panelist 
gets past the tracking/forecasting horizon of interest to 
us. It is then a simple matter to count up the number 
of visits on a week-by-week basis for each iteration of 
the simulation. We then average across 1000 iterations 
to generate the tracking and forecasting plots. Using 
the MATLAB programming language, each of these 
iterations takes only a few seconds on a standard PC, 
and we see very consistent convergence properties 
after a few dozen iterations. 

Before creating the forecasts, we re-estimate 
both models (stationary and evolving EG) using only 
the first half (i.e., four months) of the dataset. (It is 
worth noting that the evolving model parameters are 
quite robust to this changing calibration period, while 
the stationary model has a noticeably higher visit rate 
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over the shorter period – clear evidence of the 
slowdown discussed earlier). To generate the forecasts 
for the evolving visit model, we use the simulation 
procedure described above. For the stationary EG 
model, the expected number of repeat visit per week 
can be calculated directly as follows: 

  











r
tNrepeat  E wwvisits

 (15) 
where Nw is the number of eligible repeat buying 

in week w and t is the time period of interest, i.e., 
seven days in this case. Figure 5 shows cumulative 
forecasts as well as actual visits for the juice drink 
buying behaviour. 

Both models seem to track the data quite well 
over the initial four-month calibration period. 
However, as we enter the forecasting period, the 
stationary EG model begins to diverge, ultimately 
over predicting by 37% for juice drink buying 
behaviour at the end of the eight month period. It 
overestimates the number of visits per week as it does 
not recognize that shoppers are returning less 
frequently over time. The evolving visit model, 

however, forecasts quite accurately, well within 5% of 
the actual sales line throughout the forecast period. 
This is an impressive achievement and serves as a 
strong testimonial to the validity of the assumptions, 
structure, and parameter estimates associated with the 
proposed model. 
Results for data from PACKED CHICKEN buying 
behaviour 

The same set of models and analyses were also 
applied to packed chicken buying behaviour data 
(results in Table 3). We see a remarkably similar set 
of patterns as in the case of juice drink. In moving 
from the static EG model to the evolving 
specification, we see significantly shorter intervisit 
times, since the latter model can accommodate 
customer dropout. We also see, once again, that the 
mean update is close to 1.0 (0.991), but with a median 
of 0.837, customer shopping frequency is more likely 
to decrease than increase after each visit. We 
emphasize once more that these results contradict the 
summary statistics from Table 1, which seemed to 
imply that shopping frequency is increasing from one 
visit cycle to the next. 

 
Table 3. Model Results for packed chicken buying-behaviour data 

 Stationary EG Model Evolving Visit Model 
r 0.255 0.165 
  28.305 8.889 
s  2.084 

   2.104 

   
LL -9,459.6 -9,120.7 
No. of parameters 2 4 
CAIC 18,934.1 18,271.0 

 
Other benchmark models (involving dropout 

and/or constant updates) proved once again to be 
vastly inferior to the evolving visit model. Finally, our 
forecast validation led to encouraging results with 
projected visits only 2% above the actual number at 
the end of the eight month period, compared to a 40% 
over-forecast for the stationary model. While we are 
very encouraged by these strong initial results, we are 
also surprised at the degree of similarity seen for these 
two Consumer Packaged Goods. We certainly do not 
want to suggest that the specific patterns captured here 
will generalize to all online (or offline) retailers, but 
this should be ample motivation for future studies to 
find and describe a broader range of buying-
behaviour. 

 
6.  Discussion and Conclusion 

Many skeptics claim that the offline or online 
shopping is nothing more than a new distribution 
channel, and thus it should not change the way we 

examine customer behaviour. While this may be true 
in certain respects, this research highlights some of 
the uniquely different research perspectives that we 
gain from examining Packaged Goods buying-
behaviour data. The data available to us make it 
possible to study the evolution of visit behaviour. The 
model developed here is tailored specifically to both 
online and offline buying. We posit a behaviourally 
plausible – and highly parsimonious – model that 
allows visiting behaviour to evolve gradually over 
time, although it also allows for more abrupt changes, 
such as permanent dropout from the store. And 
indeed, our empirical analysis reveals the fact that the 
average update in household visiting rates is a 
multiplier close to 1.0, but there is significant spread 
around this value. 

Additionally, the manner in which we implement 
this updating scheme – a gamma distribution to 
capture the different values of these multipliers – is a 
new methodological contribution, which merits 
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consideration for other types of non-stationary 
modeling contexts. 

Use of the model reveals that individual-level 
behaviour patterns appear to contradict the perspective 
that one would obtain from examining the aggregate 
data alone. Specifically, the aggregate data seem to 
indicate an acceleration of visiting behaviour at each 
of two leading consumer packaged goods products, 
yet our model parameters suggest that the typical 
shopper is experiencing a gradual slowdown in her 
buying rate over time. The difference here is that an 
increasing number of new visitors are coming to each 
store over time, masking the slowdown that may be 
occurring for many experienced visitors. This effect 
could have dramatic implications for managers who 
neglect to examine their data at a sufficiently fine 
level of disaggregation. 

Beyond the intuitive appeal of the model 
specification and its estimated parameters, we also 
show that it has excellent validity from an out-of-
sample forecasting perspective. For the retail stores, 
the model tracks future visiting patterns extremely 
well, remaining within 5% of the actual data over the 
entire duration of a four-month holdout period. While 
this model was not constructed with forecasting in 
mind as a principal objective, this result certainly 
speaks well about its overall versatility. 
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APPENDIX.  

Moment-Matching Approximation of the Product of Two Gamma Distributions 
If x and y are two gamma distributed random variables, 
x ~ Gamma (r, a) 
y ~ Gamma (s, b) 
then the product, z = xy, can be assumed to be a gamma distributed random variable 
z ~ Gamma (R, A) 
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with shape and scale parameters, R and A, such that the first two raw moments of the z-distribution is the 
product of the moments of the x- and y-distributions. 
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Since the first moment of the z-distribution, 
zm1 , is R/A and the second moment, 

zm2 z, is R (R+1)/A2, we can 
solve for R and A with the following two equations: 
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Therefore, the gamma distribution describing the product of two independently distributed gamma random 

variables has shape and scale parameters that can be calculated from the parameters of the multiplying distributions. 

   rssr

rs
R




11     rssr
A




11



 
with Bayesian updating after observing one arrival at time t… 

 
    srsr

sr
R

112

1






 

 
    srsr

t
A

112 






  
 

 
6/22/2018 


