
Researcher 2016;8(11)    
     http://www.sciencepub.net/researcher

The New Prime theorems（491）-（540）
Jiang, Chun-Xuan
Institute for Basic Research, Palm Harbor, FL34682-1577, USA
And: P. O. Box 3924, Beijing 100854, China 
jiangchunxuan@sohu.com, cxjiang@mail.bcf.net.cn, jcxuan@sina.com, Jiangchunxuan@vip.sohu.com, jcxxxx@163.com
Abstract: Using Jiang function we are able to prove almost all prime problems in prime distribution. This is the Book proof. In this paper using Jiang function 
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 we prove that the new prime theorems (491)-（540) contain infinitely many prime solutions and no prime solutions.From (6) we are able to find the smallest solution. . This is the Book theorem.
[Jiang, Chun-Xuan. The New Prime theorems（491）-（540）. Researcher 2016;8(11):16-67]. ISSN 1553-9865 (print); ISSN 2163-8950 (online). http://www.sciencepub.net/researcher. 4. doi:10.7537/marsrsj081116.04.
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Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. The sieve methods and circle method are outdated methods which cannot prove twin prime conjecture and Goldbach’s conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao are based on the Hardy-Littlewood prime k-tuple conjecture (1923). But the Hardy-Littlewood prime k-tuple conjecture is false:

(http://www.wbabin.net/math/xuan77.pdf)
(http://vixra.org/pdf/1003.0234v1.pdf)
The world mathematicians read Jiang’s book and papers.In 1998 Jiang disproved Riemann hypothesis.In 1996 Jiang proved Goldbach conjecture and twin prime conjecture. Using a new analytical tool Jiang invented: the Jiang function, Jiang proves almost all prime problems in prime distribution. Jiang established the foundations of Santilli’s isonumber theory. China rejected to speak the Jiang epoch-making works in ICM2002 which was a failure congress.China considers Jiang epoch-making works to be pseudoscience. Jiang negated ICM2006 Fields medal(Green and Tao theorem is false):

（http://www.wbabin.net/math/xuan39e.pdf）

（http://www.vixra.org/pdf/0904.0001v1.pdf）

There are no Jiang’s epoch-making works in ICM2010. It cannot represent the modern mathematical level. Therefore ICM2010 is failure congress. China rejects to review Jiang’s epoch-making works. IMU is able to review Jiang’s epoch-making works.Landau said:”Wir Mathematiker sind all ein bisschen meschugge”.
http://wbabin.net/xuan.htm#chun-xuan
http://vixra.org/numth/
The New Prime theorem（491）
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Abstract

Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.
Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
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If 
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We prove that (1) contain no prime solutions [1,2]
If 
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 then we have asymptotic formula [1,2]
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where 
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From (6) we are able to find the smallest solution 
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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，
(1) contain infinitely many prime solutions

The New Prime theorem（492）
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Abstract

Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
[image: image34.wmf]P

P

w

=P

，
[image: image35.wmf]()

P

c

 is the number of solutions of congruence


[image: image36.wmf]1

904

1

0(mod),1,,1

k

j

jqkjPqP

-

=

éù

P+-º=-

ëû

L

        
（3）

If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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If 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
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we prove that for 
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k

=

,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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，
(1) contain infinitely many prime solutions

The New Prime theorem（493）
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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,
(1) contain infinitely many prime solutions
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
[image: image101.wmf]3,5

k

¹

.

From (2) and (3) we have


[image: image102.wmf]2

()0

J

w

¹

                    
（8）

We prove that for 
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(1) contain infinitely many prime solutions
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image106.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions
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Abstract

Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image131.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]


[image: image133.wmf]2

()[1()]

P

JPP

wc

=P--

                   
（2）

where 
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image145.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.

[image: image157.wmf]914

,(1,,1)

PjPkjjk

+-=-

L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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,
(1) contain infinitely many prime solutions
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image181.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image189.wmf]k

 there are infinitely many primes 
[image: image190.wmf]P

 such that each of 
[image: image191.wmf]916

jp

+
[image: image192.wmf]kj

-

 is a prime.

If 
[image: image193.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image195.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image198.wmf]3,5

k

=

. From (2) and(3) we have
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we prove that for 
[image: image200.wmf]3,5

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image201.wmf]3,5
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.

From (2) and (3) we have
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We prove that for 
[image: image203.wmf]3,5

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（499）
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Abstract

Using Jiang function we prove that 
[image: image205.wmf]918

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image206.wmf]k

 be a given odd prime.
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.              
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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 is the number of solutions of congruence


[image: image211.wmf]1

918

1

0(mod),1,,1

k

j

jqkjPqP

-

=

éù

P+-º=-

ëû

L

        
（3）

If 
[image: image212.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image214.wmf]k

 there are infinitely many primes 
[image: image215.wmf]P

 such that each of 
[image: image216.wmf]918

jp

+
[image: image217.wmf]kj

-

 is a prime.

If 
[image: image218.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image220.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image222.wmf]()(1)
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Example 1. Let 
[image: image223.wmf]3,7,19,103,307,409,919

k

=

. From (2) and(3) we have
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（7）

we prove that for 
[image: image225.wmf]3,7,19,103,307,409,919

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image226.wmf]3,7,19,103,307,409,919

k

¹

.

From (2) and (3) we have
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We prove that for 
[image: image228.wmf]3,7,19,103,307,409,919

k
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,
(1) contain infinitely many prime solutions

The New Prime theorem（500）
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Abstract

Using Jiang function we prove that 
[image: image230.wmf]920

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image231.wmf]k

 be a given odd prime.
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L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
[image: image237.wmf]()2
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image239.wmf]k

 there are infinitely many primes 
[image: image240.wmf]P

 such that each of 
[image: image241.wmf]920

jp

+
[image: image242.wmf]kj

-

 is a prime.

If 
[image: image243.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image245.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image247.wmf]()(1)
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Example 1. Let 
[image: image248.wmf]3,5,11,41,47,461

k
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. From (2) and(3) we have
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（7）

we prove that for 
[image: image250.wmf]3,5,11,41,47,461

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image251.wmf]3,5,11,41,47,461

k

¹

.

From (2) and (3) we have
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（8）

We prove that for 
[image: image253.wmf]3,5,11,41,47,461

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（501）
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Abstract

Using Jiang function we prove that 
[image: image255.wmf]922
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+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image256.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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，
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 is the number of solutions of congruence


[image: image261.wmf]1

922

1

0(mod),1,,1

k

j

jqkjPqP

-

=

éù

P+-º=-

ëû

L

        
（3）

If 
[image: image262.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image264.wmf]k

 there are infinitely many primes 
[image: image265.wmf]P

 such that each of 
[image: image266.wmf]922

jp

+
[image: image267.wmf]kj

-

 is a prime.

If 
[image: image268.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image270.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image272.wmf]()(1)
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Example 1. Let 
[image: image273.wmf]3

k
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. From (2) and(3) we have
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=

                    
（7）

we prove that for 
[image: image275.wmf]3

k

=

,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
[image: image276.wmf]3

k

¹

.

From (2) and (3) we have
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（8）

We prove that for 
[image: image278.wmf]3

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（502）
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Abstract

Using Jiang function we prove that 
[image: image280.wmf]924

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image281.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image287.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image289.wmf]k

 there are infinitely many primes 
[image: image290.wmf]P

 such that each of 
[image: image291.wmf]924
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+
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 is a prime.

If 
[image: image293.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image295.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image297.wmf]()(1)
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Example 1. Let 
[image: image298.wmf]3,5,7,13,23,29,43,67,463
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. From (2) and(3) we have
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（7）

we prove that for 
[image: image300.wmf]3,5,7,13,23,29,43,67,463

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image301.wmf]3,5,7,13,23,29,43,67,463

k

¹

.

From (2) and (3) we have
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()0

J

w

¹
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We prove that for 
[image: image303.wmf]3,5,7,13,23,29,43,67,463

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（503）
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Abstract

Using Jiang function we prove that 
[image: image305.wmf]926

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image306.wmf]k

 be a given odd prime.
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.              
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image314.wmf]k

 there are infinitely many primes 
[image: image315.wmf]P

 such that each of 
[image: image316.wmf]926
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+
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-

 is a prime.

If 
[image: image318.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image320.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image323.wmf]3
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. From (2) and(3) we have


[image: image324.wmf]2

()0

J

w

=

                    
（7）

we prove that for 
[image: image325.wmf]3

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image326.wmf]3
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.

From (2) and (3) we have


[image: image327.wmf]2
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We prove that for 
[image: image328.wmf]3

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（504）
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Abstract

Using Jiang function we prove that 
[image: image330.wmf]928

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image331.wmf]k

 be a given odd prime.
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.              
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image337.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image339.wmf]k

 there are infinitely many primes 
[image: image340.wmf]P

 such that each of 
[image: image341.wmf]928
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+
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-

 is a prime.

If 
[image: image343.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image345.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image348.wmf]3,5,17,59,233,929

k

=

. From (2) and(3) we have
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we prove that for 
[image: image350.wmf]3,5,17,59,233,929

k

=

,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
[image: image351.wmf]3,5,17,59,233,929

k

¹

.

From (2) and (3) we have
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We prove that for 
[image: image353.wmf]3,5,17,59,233,929
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,
(1) contain infinitely many prime solutions

The New Prime theorem（505）
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Abstract

Using Jiang function we prove that 
[image: image355.wmf]930

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image356.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image362.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image364.wmf]k

 there are infinitely many primes 
[image: image365.wmf]P

 such that each of 
[image: image366.wmf]930
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+
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-

 is a prime.

If 
[image: image368.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image370.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image372.wmf]()(1)
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Example 1. Let 
[image: image373.wmf]3,7,11,31,311
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=

. From (2) and(3) we have
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we prove that for 
[image: image375.wmf]3,7,11,31,311

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image376.wmf]3,7,11,31,311

k

¹

.

From (2) and (3) we have
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（8）

We prove that for 
[image: image378.wmf]3,7,11,31,311

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（506）
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Abstract

Using Jiang function we prove that 
[image: image380.wmf]932

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image381.wmf]k

 be a given odd prime.

[image: image382.wmf]932
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+-=-

L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]


[image: image383.wmf]2
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where 
[image: image384.wmf]P
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，
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If 
[image: image387.wmf]()2
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image389.wmf]k

 there are infinitely many primes 
[image: image390.wmf]P

 such that each of 
[image: image391.wmf]932

jp

+
[image: image392.wmf]kj

-

 is a prime.

If 
[image: image393.wmf]()1

PP

c

=-

 then from (2) and (3) we have


[image: image394.wmf]2
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（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image395.wmf]2
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w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image397.wmf]()(1)
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.

Example 1. Let 
[image: image398.wmf]3,5,467

k

=

. From (2) and(3) we have


[image: image399.wmf]2
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（7）

we prove that for 
[image: image400.wmf]3,5,467

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image401.wmf]3,5,467

k

¹

.

From (2) and (3) we have


[image: image402.wmf]2
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（8）

We prove that for 
[image: image403.wmf]3,5,467

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（507）
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Abstract

Using Jiang function we prove that 
[image: image405.wmf]934

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image406.wmf]k

 be a given odd prime.
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L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
[image: image409.wmf]P
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，
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If 
[image: image412.wmf]()2
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image414.wmf]k

 there are infinitely many primes 
[image: image415.wmf]P

 such that each of 
[image: image416.wmf]934

jp

+
[image: image417.wmf]kj

-

 is a prime.

If 
[image: image418.wmf]()1

PP

c

=-

 then from (2) and (3) we have


[image: image419.wmf]2

()0

J

w

=

                     
（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image420.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image422.wmf]()(1)
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.

Example 1. Let 
[image: image423.wmf]3

k

=

. From (2) and(3) we have
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（7）

we prove that for 
[image: image425.wmf]3

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image426.wmf]3

k

¹

.

From (2) and (3) we have


[image: image427.wmf]2
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（8）

We prove that for 
[image: image428.wmf]3

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（508）
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Abstract

Using Jiang function we prove that 
[image: image430.wmf]936

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image431.wmf]k

 be a given odd prime.
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L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
[image: image434.wmf]P
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，
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 is the number of solutions of congruence
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If 
[image: image437.wmf]()2

PP

c
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 then from (2) and (3) we have


[image: image438.wmf]2
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image439.wmf]k

 there are infinitely many primes 
[image: image440.wmf]P

 such that each of 
[image: image441.wmf]936

jp

+
[image: image442.wmf]kj

-

 is a prime.

If 
[image: image443.wmf]()1

PP

c

=-

 then from (2) and (3) we have


[image: image444.wmf]2
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（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image445.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image447.wmf]()(1)
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Example 1. Let 
[image: image448.wmf]3,5,7,13,19,37,157,313,937

k

=

. From (2) and(3) we have


[image: image449.wmf]2
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（7）

we prove that for 
[image: image450.wmf]3,5,7,13,19,37,157,313,937

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image451.wmf]3,5,7,13,19,37,157,313,937

k

¹

.

From (2) and (3) we have


[image: image452.wmf]2
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（8）

We prove that for 
[image: image453.wmf]3,5,7,13,19,37,157,313,937

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（509）
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Abstract

Using Jiang function we prove that 
[image: image455.wmf]938

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image456.wmf]k

 be a given odd prime.

[image: image457.wmf]938
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L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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，
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 is the number of solutions of congruence
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If 
[image: image462.wmf]()2
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image464.wmf]k

 there are infinitely many primes 
[image: image465.wmf]P

 such that each of 
[image: image466.wmf]938

jp

+
[image: image467.wmf]kj

-

 is a prime.

If 
[image: image468.wmf]()1

PP

c

=-

 then from (2) and (3) we have
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（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image470.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image472.wmf]()(1)
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.

Example 1. Let 
[image: image473.wmf]3

k

=

. From (2) and(3) we have
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=

                    
（7）

we prove that for 
[image: image475.wmf]3

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image476.wmf]3

k

¹

.

From (2) and (3) we have


[image: image477.wmf]2
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（8）

We prove that for 
[image: image478.wmf]3

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（510）
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Abstract

Using Jiang function we prove that 
[image: image480.wmf]940

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image481.wmf]k

 be a given odd prime.
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.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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，
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If 
[image: image487.wmf]()2
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image489.wmf]k

 there are infinitely many primes 
[image: image490.wmf]P

 such that each of 
[image: image491.wmf]940
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+
[image: image492.wmf]kj

-

 is a prime.

If 
[image: image493.wmf]()1
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 then from (2) and (3) we have
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（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image495.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image497.wmf]()(1)
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Example 1. Let 
[image: image498.wmf]3,5,11,941

k

=

. From (2) and(3) we have
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（7）

we prove that for 
[image: image500.wmf]3,5,11,941

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image501.wmf]3,5,11,941

k

¹

.

From (2) and (3) we have
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（8）

We prove that for 
[image: image503.wmf]3,5,11,941

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（511）
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Abstract

Using Jiang function we prove that 
[image: image505.wmf]942

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image506.wmf]k

 be a given odd prime.
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.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image512.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image514.wmf]k

 there are infinitely many primes 
[image: image515.wmf]P

 such that each of 
[image: image516.wmf]942

jp

+
[image: image517.wmf]kj

-

 is a prime.

If 
[image: image518.wmf]()1
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 then from (2) and (3) we have
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（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image520.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image522.wmf]()(1)
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Example 1. Let 
[image: image523.wmf]3,7

k
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. From (2) and(3) we have
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（7）

we prove that for 
[image: image525.wmf]3,7

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image526.wmf]3,7

k
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.

From (2) and (3) we have
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（8）

We prove that for 
[image: image528.wmf]3,7

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（512）
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Abstract

Using Jiang function we prove that 
[image: image530.wmf]944

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image531.wmf]k

 be a given odd prime.
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.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image537.wmf]()2
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image539.wmf]k

 there are infinitely many primes 
[image: image540.wmf]P

 such that each of 
[image: image541.wmf]944

jp

+
[image: image542.wmf]kj

-

 is a prime.

If 
[image: image543.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image545.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image548.wmf]3,5,17
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. From (2) and(3) we have
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()0

J

w

=

                    
（7）

we prove that for 
[image: image550.wmf]3,5,17

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image551.wmf]3,5,17
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.

From (2) and (3) we have
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We prove that for
[image: image553.wmf]3,5,17
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,
(1) contain infinitely many prime solutions

The New Prime theorem（513）
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Abstract

Using Jiang function we prove that 
[image: image555.wmf]946
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image556.wmf]k

 be a given odd prime.
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.              
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]


[image: image558.wmf]2

()[1()]

P

JPP

wc

=P--

                   
（2）

where 
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If 
[image: image562.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image564.wmf]k

 there are infinitely many primes 
[image: image565.wmf]P

 such that each of 
[image: image566.wmf]946
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+
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-

 is a prime.

If 
[image: image568.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image570.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image573.wmf]3,23,947
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we prove that for 
[image: image575.wmf]3,23,947

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image576.wmf]3,23,947
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.

From (2) and (3) we have
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We prove that for 
[image: image578.wmf]3,23,947
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,
(1) contain infinitely many prime solutions

The New Prime theorem（514）
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Abstract

Using Jiang function we prove that 
[image: image580.wmf]948

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image581.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image589.wmf]k

 there are infinitely many primes 
[image: image590.wmf]P

 such that each of 
[image: image591.wmf]948
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+
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 is a prime.

If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image595.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
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we prove that for 
[image: image600.wmf]3,5,7,13,317

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image601.wmf]3,5,7,13,317
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.

From (2) and (3) we have
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We prove that for 
[image: image603.wmf]3,5,7,13,317

k
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,
(1) contain infinitely many prime solutions

The New Prime theorem（515）
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Abstract

Using Jiang function we prove that 
[image: image605.wmf]950
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image606.wmf]k

 be a given odd prime.

[image: image607.wmf]950

,(1,,1)

PjPkjjk

+-=-

L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image612.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image614.wmf]k

 there are infinitely many primes 
[image: image615.wmf]P

 such that each of 
[image: image616.wmf]950
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 is a prime.

If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image620.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image623.wmf]3,11,191
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. From (2) and(3) we have
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we prove that for 
[image: image625.wmf]3,11,191

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image626.wmf]3,11,191
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.

From (2) and (3) we have
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We prove that for 
[image: image628.wmf]3,11,191

k
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,
(1) contain infinitely many prime solutions

The New Prime theorem（516）
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Abstract

Using Jiang function we prove that 
[image: image630.wmf]952
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image631.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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PP

c

£-

 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image639.wmf]k

 there are infinitely many primes 
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 such that each of 
[image: image641.wmf]952
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 is a prime.

If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image645.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image648.wmf]3,5,29,137,239,953
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. From (2) and(3) we have
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we prove that for 
[image: image650.wmf]3,5,29,137,239,953

k
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image651.wmf]3,5,29,137,239,953
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.

From (2) and (3) we have
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We prove that for 
[image: image653.wmf]3,5,29,137,239,953
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,
(1) contain infinitely many prime solutions

The New Prime theorem（517）
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Abstract

Using Jiang function we prove that 
[image: image655.wmf]954
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image656.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
[image: image665.wmf]P

 such that each of 
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If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image673.wmf]3,7,19,107
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. From (2) and(3) we have
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we prove that for 
[image: image675.wmf]3,7,19,107

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image676.wmf]3,7,19,107
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.

From (2) and (3) we have
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We prove that for 
[image: image678.wmf]3,7,19,107

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（518）
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Abstract

Using Jiang function we prove that 
[image: image680.wmf]956

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image681.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
[image: image690.wmf]P

 such that each of 
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If 
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image695.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
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. From (2) and(3) we have
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we prove that for 
[image: image700.wmf]3,5,479
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image701.wmf]3,5,479
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From (2) and (3) we have
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We prove that for 
[image: image703.wmf]3,5,479
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,
(1) contain infinitely many prime solutions

The New Prime theorem（519）
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Abstract

Using Jiang function we prove that 
[image: image705.wmf]958
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image706.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image712.wmf]()2
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image714.wmf]k

 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
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. From (2) and(3) we have
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we prove that for 
[image: image725.wmf]3
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image726.wmf]3
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From (2) and (3) we have
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We prove that for 
[image: image728.wmf]3
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,
(1) contain infinitely many prime solutions

The New Prime theorem（520）
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Abstract

Using Jiang function we prove that 
[image: image730.wmf]960
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image731.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image739.wmf]k

 there are infinitely many primes 
[image: image740.wmf]P

 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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where 
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Example 1. Let 
[image: image748.wmf]3,5,7,11,13,17,31,41,61,97,193,241
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. From (2) and(3) we have
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we prove that for 
[image: image750.wmf]3,5,7,11,13,17,31,41,61,97,193,241

k
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image751.wmf]3,5,7,11,13,17,31,41,61,97,193,241
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.

From (2) and (3) we have
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We prove that for 
[image: image753.wmf]3,5,7,11,13,17,31,41,61,97,193,241
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,
(1) contain infinitely many prime solutions

The New Prime theorem（521）
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Abstract

Using Jiang function we prove that 
[image: image755.wmf]962
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image756.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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 is a prime.
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We prove that (1) contain no prime solutions [1,2]

If 
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Example 1. Let 
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we prove that for 
[image: image775.wmf]3
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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.

From (2) and (3) we have
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We prove that for 
[image: image778.wmf]3
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,
(1) contain infinitely many prime solutions

The New Prime theorem（522）
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Abstract

Using Jiang function we prove that 
[image: image780.wmf]964
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+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image781.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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 is a prime.
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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Example 1. Let 
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we prove that for 
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
[image: image803.wmf]3,5
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(1) contain infinitely many prime solutions

The New Prime theorem（523）


[image: image804.wmf]966

,(1,,1)

PjPkjjk

+-=-

L


Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that 
[image: image805.wmf]966
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image806.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image814.wmf]k

 there are infinitely many primes 
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 such that each of 
[image: image816.wmf]966
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 is a prime.

If 
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 then from (2) and (3) we have


[image: image819.wmf]2

()0

J

w

=

                     
（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image820.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
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. From (2) and(3) we have
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we prove that for 
[image: image825.wmf]3,7,43,47,139,967
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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.

From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions

The New Prime theorem（524）
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Abstract

Using Jiang function we prove that 
[image: image830.wmf]968
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image831.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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Example 1. Let 
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. From (2) and(3) we have
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we prove that for 
[image: image850.wmf]3,5,23,89

k

=

,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
[image: image851.wmf]3,5,23,89
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.

From (2) and (3) we have
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We prove that for 
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,
(1) contain infinitely many prime solutions

The New Prime theorem（525）
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Using Jiang function we prove that 
[image: image855.wmf]970
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image856.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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If 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]


[image: image871.wmf]{

}

1

970

2

1

()

(,2):~

(970)()log

k

k

kkk

J

N

NPNjPkjprime

N

ww

p

fw

-

-

=£+-=

 
（6）

where 
[image: image872.wmf]()(1)

P

P

fw

=P-

.

Example 1. Let 
[image: image873.wmf]3,11,971
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. From (2) and(3) we have
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we prove that for 
[image: image875.wmf]3,11,971
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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.

From (2) and (3) we have
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We prove that for 
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,
(1) contain infinitely many prime solutions

The New Prime theorem（526）
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Using Jiang function we prove that 
[image: image880.wmf]972
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image881.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image889.wmf]k

 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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Example 1. Let 
[image: image898.wmf]3,5,7,13,19,37,109,163,487
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. From (2) and(3) we have
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we prove that for 
[image: image900.wmf]3,5,7,13,19,37,109,163,487
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image901.wmf]3,5,7,13,19,37,109,163,487
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.

From (2) and (3) we have
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We prove that for 
[image: image903.wmf]3,5,7,13,19,37,109,163,487
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(1) contain infinitely many prime solutions

The New Prime theorem（527）
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Abstract

Using Jiang function we prove that 
[image: image905.wmf]974
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image906.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image914.wmf]k

 there are infinitely many primes 
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 such that each of 
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[image: image919.wmf]2

()0

J

w

=

                     
（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image920.wmf]2
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 then we have asymptotic formula [1,2]
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Example 1. Let 
[image: image923.wmf]3
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. From (2) and(3) we have
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we prove that for 
[image: image925.wmf]3
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image926.wmf]3
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From (2) and (3) we have
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We prove that for 
[image: image928.wmf]3
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(1) contain infinitely many prime solutions

The New Prime theorem（528）
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Using Jiang function we prove that 
[image: image930.wmf]976
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image931.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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Example 1. Let 
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. From (2) and(3) we have
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we prove that for 
[image: image950.wmf]3,5,17,977
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image951.wmf]3,5,17,977
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From (2) and (3) we have
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We prove that for 
[image: image953.wmf]3,5,17,977
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(1) contain infinitely many prime solutions

The New Prime theorem（529）
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Abstract

Using Jiang function we prove that 
[image: image955.wmf]978
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image956.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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 is a prime.

If 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
[image: image972.wmf]()(1)

P

P

fw

=P-

.

Example 1. Let 
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we prove that for 
[image: image975.wmf]3,7
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
[image: image978.wmf]3,7
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,
(1) contain infinitely many prime solutions

The New Prime theorem（530）
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Abstract

Using Jiang function we prove that 
[image: image980.wmf]980
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image981.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
[image: image987.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image989.wmf]k

 there are infinitely many primes 
[image: image990.wmf]P

 such that each of 
[image: image991.wmf]980
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+
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 is a prime.

If 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image998.wmf]3,5,11,29,71,197,491
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. From (2) and(3) we have
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we prove that for 
[image: image1000.wmf]3,5,11,29,71,197,491

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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.

From (2) and (3) we have
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We prove that for 
[image: image1003.wmf]3,5,11,29,71,197,491

k
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,
(1) contain infinitely many prime solutions

The New Prime theorem（531）
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Abstract

Using Jiang function we prove that 
[image: image1005.wmf]982
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1006.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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 is a prime.

If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
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. From (2) and(3) we have


[image: image1024.wmf]2

()0

J

w

=

                    
（7）

we prove that for 
[image: image1025.wmf]3,983
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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.

From (2) and (3) we have
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We prove that for 
[image: image1028.wmf]3,983
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,
(1) contain infinitely many prime solutions

The New Prime theorem（532）
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Abstract

Using Jiang function we prove that 
[image: image1030.wmf]984

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1031.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image1039.wmf]k

 there are infinitely many primes 
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 such that each of 
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If 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
[image: image1047.wmf]()(1)
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Example 1. Let 
[image: image1048.wmf]3,5,7,13,83
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we prove that for 
[image: image1050.wmf]3,5,7,13,83
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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.

From (2) and (3) we have
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We prove that for 
[image: image1053.wmf]3,5,7,13,83
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,
(1) contain infinitely many prime solutions

The New Prime theorem（533）
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Abstract

Using Jiang function we prove that 
[image: image1055.wmf]986
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1056.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image1064.wmf]k

 there are infinitely many primes 
[image: image1065.wmf]P

 such that each of 
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 is a prime.
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
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. From (2) and(3) we have
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we prove that for 
[image: image1075.wmf]3,59
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
[image: image1078.wmf]3,59
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(1) contain infinitely many prime solutions

The New Prime theorem（534）
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Abstract

Using Jiang function we prove that 
[image: image1080.wmf]988
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1081.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image1089.wmf]k

 there are infinitely many primes 
[image: image1090.wmf]P

 such that each of 
[image: image1091.wmf]988
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 is a prime.

If 
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 then from (2) and (3) we have


[image: image1094.wmf]2

()0

J

w

=

                     
（5）

We prove that (1) contain no prime solutions [1,2]

If 
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()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image1097.wmf]()(1)
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Example 1. Let 
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. From (2) and(3) we have
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we prove that for 
[image: image1100.wmf]3,5,53

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image1101.wmf]3,5,53
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.

From (2) and (3) we have
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We prove that for 
[image: image1103.wmf]3,5,53
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,
(1) contain infinitely many prime solutions

The New Prime theorem（535）
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Abstract

Using Jiang function we prove that 
[image: image1105.wmf]990
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1106.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image1114.wmf]k

 there are infinitely many primes 
[image: image1115.wmf]P

 such that each of 
[image: image1116.wmf]990
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 is a prime.

If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image1120.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image1123.wmf]3,7,11,19,23,31,67,199,331,991
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. From (2) and(3) we have
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we prove that for 
[image: image1125.wmf]3,7,11,19,23,31,67,199,331,991
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=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image1126.wmf]3,7,11,19,23,31,67,199,331,991
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.

From (2) and (3) we have


[image: image1127.wmf]2

()0

J

w

¹

                    
（8）

We prove that for 
[image: image1128.wmf]3,7,11,19,23,31,67,199,331,991
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,
(1) contain infinitely many prime solutions

The New Prime theorem（536）
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Abstract

Using Jiang function we prove that 
[image: image1130.wmf]992
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1131.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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[image: image1138.wmf]2

()0

J

w

¹

                     
（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image1139.wmf]k

 there are infinitely many primes 
[image: image1140.wmf]P

 such that each of 
[image: image1141.wmf]992
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 is a prime.

If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image1148.wmf]3,5,17
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. From (2) and(3) we have
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.
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[image: image1151.wmf]3,5,17

k

¹

.

From (2) and (3) we have


[image: image1152.wmf]2

()0

J

w

¹

                    
（8）

We prove that for 
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，
(1) contain infinitely many prime solutions

The New Prime theorem（537）


[image: image1154.wmf]994

,(1,,1)

PjPkjjk

+-=-

L


Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that 
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Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]

If 
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Example 1. Let 
[image: image1173.wmf]3

k

=

. From (2) and(3) we have


[image: image1174.wmf]2

()0

J

w

=

                    
（7）

we prove that for 
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
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，
(1) contain infinitely many prime solutions

The New Prime theorem（538）
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image1189.wmf]k

 there are infinitely many primes 
[image: image1190.wmf]P

 such that each of 
[image: image1191.wmf]996

jp

+
[image: image1192.wmf]kj

-

 is a prime.

If 
[image: image1193.wmf]()1

PP

c

=-

 then from (2) and (3) we have


[image: image1194.wmf]2

()0

J

w

=

                     
（5）

We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
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，
(1) contain infinitely many prime solutions

The New Prime theorem（539）
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]

If 
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
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，
(1) contain infinitely many prime solutions

The New Prime theorem（540）
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]

If 
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions

Remark. The prime number theory is basically to count the Jiang function 
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[1,2], which can count the number of prime numbers. The prime distribution is not random. But Hardy-Littlewood prime 
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 is false [3-17], which cannot count the number of prime numbers[3].
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Szemerédi’s theorem does not directly to the primes, because it cannot count the number of primes.  Cramér’s random model cannot prove any prime problems. The probability of 
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 we obtain the prime conjecture, which is false. The tool of additive prime number theory is basically the Hardy-Littlewood prime tuples conjecture, but cannot prove and count any prime problems[6].

Mathematicians have tried in vain to discover some order in the sequence of prime numbers but we have every reason to believe that there are some mysteries which the human mind will never penetrate.

Leonhard Euler(1707-1783)

It will be another million years, at least, before we understand the primes.

Paul Erdos(1913-1996)

Of course, the primes are a deterministic set of integers, not a random one, so the predictions given by random models are not rigorous (Terence Tao, Structure and randomness in the prime numbers, preprint). Erdos and Turán(1936) contributed to probabilistic number theory, where the primes are treated as if they were random, which generates Szemerédi’s theorem (1975) and Green-Tao theorem(2004). But they cannot actually prove and count any simplest prime examples: twin primes and Goldbach’s conjecture. They don’t know what prime theory means, only conjectures.
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The Formula of the Particle Radii

In 1996 we found the formula of the particle radii[1-3]
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From (1) we have that the proton and neutron radii are 1.5jn.

Pohl et al measure the proton diameter 3 jn[4].

We have the formula of the nuclear radii
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It is shows that (1) and (2) have the same form. The particle radii 
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