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 we prove that the new prime theorems (341)-（390) contain infinitely many prime solutions and no prime solutions. Analytic and combinatorial number theory (August 29-September 3, ICM2010) is a conjecture. The sieve methods and circle method are outdated methods which cannot prove twin prime conjecture and Goldbach’s conjecture. The papers of Goldston-Pintz-Yildirim and Green-Tao are based on the Hardy-Littlewood prime k-tuple conjecture (1923). But the Hardy-Littlewood prime k-tuple conjecture is false: () (http://vixra.org/pdf/1003.0234v1.pdf). Mathematicians do not speak advanced mathematical papers in ICM2010. ICM2010 is lower congress.
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Abstract

Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.
Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]
If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
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we prove that for 
[image: image23.wmf]3,7,19,79,139

k
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,
(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image46.wmf]3,5,17,23,89,353

k

=

. From (2) and(3) we have
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we prove that for 
[image: image48.wmf]3,5,17,23,89,353
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,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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Example 1. Let 
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. From (2) and(3) we have
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
[image: image74.wmf]3

k

>

.

From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image79.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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Example 1. Let 
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k

=
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we prove that for 
[image: image98.wmf]3,5,7,13,709

k

=

,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
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.

From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
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(1) contain infinitely many prime solutions
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image129.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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Example 1. Let 
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we prove that for 
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We prove that for 
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(1) contain infinitely many prime solutions
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image154.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]


[image: image156.wmf]2

()[1()]

P

JPP

wc

=P--

                   
（2）

where 
[image: image157.wmf]P

P

w

=P

，
[image: image158.wmf]()

P

c

 is the number of solutions of congruence


[image: image159.wmf]1

714

1

0(mod),1,,1

k

j

jqkjPqP

-

=

éù

P+-º=-

ëû

L

        
（3）

If 
[image: image160.wmf]()2

PP

c

£-

 then from (2) and (3) we have


[image: image161.wmf]2

()0

J

w

¹

                     
（4）

We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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Example 1. Let 
[image: image171.wmf]3,7,43,103

k

=

. From (2) and(3) we have


[image: image172.wmf]2

()0

J

w

=

                    
（7）

we prove that for 
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have


[image: image175.wmf]2

()0

J

w

¹

                    
（8）

We prove that for 
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(1) contain infinitely many prime solutions

The New Prime theorem（398）


[image: image177.wmf]716

,(1,,1)

PjPkjjk

+-=-

L


Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]


[image: image181.wmf]2

()[1()]

P

JPP

wc

=P--

                   
（2）

where 
[image: image182.wmf]P

P

w

=P

，
[image: image183.wmf]()

P

c

 is the number of solutions of congruence


[image: image184.wmf]1

716

1

0(mod),1,,1

k

j

jqkjPqP

-

=

éù

P+-º=-

ëû

L

        
（3）

If 
[image: image185.wmf]()2

PP

c

£-

 then from (2) and (3) we have


[image: image186.wmf]2

()0

J

w

¹

                     
（4）

We prove that (1) contain infinitely many prime solutions that is for any 
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 then from (2) and (3) we have


[image: image192.wmf]2
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w

=

                     
（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image193.wmf]2
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J

w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image195.wmf]()(1)

P

P

fw

=P-

.

Example 1. Let 
[image: image196.wmf]3,5,359

k

=

. From (2) and(3) we have
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（7）

we prove that for 
[image: image198.wmf]3,5,359

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image199.wmf]3,5,359

k

¹

.

From (2) and (3) we have


[image: image200.wmf]2
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w
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（8）

We prove that for 
[image: image201.wmf]3,5,359

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（399）
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Abstract

Using Jiang function we prove that 
[image: image203.wmf]718

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image204.wmf]k

 be a given odd prime.

[image: image205.wmf]718
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PjPkjjk

+-=-

L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]


[image: image206.wmf]2
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where 
[image: image207.wmf]P
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，
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If 
[image: image210.wmf]()2
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 then from (2) and (3) we have
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¹

                     
（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image212.wmf]k

 there are infinitely many primes 
[image: image213.wmf]P

 such that each of 
[image: image214.wmf]718

jp

+
[image: image215.wmf]kj

-

 is a prime.

If 
[image: image216.wmf]()1

PP

c

=-

 then from (2) and (3) we have


[image: image217.wmf]2
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w

=

                     
（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image218.wmf]2
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w
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 then we have asymptotic formula [1,2]
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where 
[image: image220.wmf]()(1)
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.

Example 1. Let 
[image: image221.wmf]3

k

=

. From (2) and(3) we have


[image: image222.wmf]2
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J

w

=

                    
（7）

we prove that for 
[image: image223.wmf]3

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image224.wmf]3

k

>

.

From (2) and (3) we have


[image: image225.wmf]2
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（8）

We prove that for 
[image: image226.wmf]3

k

>

,
(1) contain infinitely many prime solutions

The New Prime theorem（400）
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Abstract

Using Jiang function we prove that 
[image: image228.wmf]720

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image229.wmf]k

 be a given odd prime.

[image: image230.wmf]720
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+-=-

L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
[image: image232.wmf]P

P

w

=P

，
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 is the number of solutions of congruence


[image: image234.wmf]1

720

1

0(mod),1,,1

k

j

jqkjPqP

-

=

éù

P+-º=-

ëû

L

        
（3）

If 
[image: image235.wmf]()2

PP

c
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 then from (2) and (3) we have


[image: image236.wmf]2
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¹

                     
（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image237.wmf]k

 there are infinitely many primes 
[image: image238.wmf]P

 such that each of 
[image: image239.wmf]720

jp

+
[image: image240.wmf]kj

-

 is a prime.

If 
[image: image241.wmf]()1

PP

c

=-

 then from (2) and (3) we have


[image: image242.wmf]2
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w

=

                     
（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image243.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image245.wmf]()(1)
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.

Example 1. Let 
[image: image246.wmf]3,5,7,11,13,17,19,31,37,41,61,73,181,241

k

=

. From (2) and(3) we have


[image: image247.wmf]2
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w

=

                    
（7）

we prove that for 
[image: image248.wmf]3,5,7,11,13,17,19,31,37,41,61,73,181,241

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image249.wmf]3,5,7,11,13,17,19,31,37,41,61,73,181,241

k

¹

.

From (2) and (3) we have


[image: image250.wmf]2
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w

¹

                    
（8）

We prove that for 
[image: image251.wmf]3,5,7,11,13,17,19,31,37,41,61,73,181,241

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（401）
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Abstract

Using Jiang function we prove that 
[image: image253.wmf]722

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image254.wmf]k

 be a given odd prime.

[image: image255.wmf]722
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+-=-

L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
[image: image257.wmf]P
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，
[image: image258.wmf]()
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 is the number of solutions of congruence
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If 
[image: image260.wmf]()2
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image262.wmf]k

 there are infinitely many primes 
[image: image263.wmf]P

 such that each of 
[image: image264.wmf]722

jp

+
[image: image265.wmf]kj

-

 is a prime.

If 
[image: image266.wmf]()1

PP

c

=-

 then from (2) and (3) we have
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w

=

                     
（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image268.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image270.wmf]()(1)
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.

Example 1. Let 
[image: image271.wmf]3

k

=

. From (2) and(3) we have


[image: image272.wmf]2

()0

J

w

=

                    
（7）

we prove that for 
[image: image273.wmf]3

k

=

,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
[image: image274.wmf]3

k

>

.

From (2) and (3) we have


[image: image275.wmf]2
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（8）

We prove that for 
[image: image276.wmf]3

k

>

,
(1) contain infinitely many prime solutions

The New Prime theorem（402）
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Abstract

Using Jiang function we prove that 
[image: image278.wmf]724

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image279.wmf]k

 be a given odd prime.

[image: image280.wmf]724
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PjPkjjk
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L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
[image: image282.wmf]P

P

w

=P

，
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 is the number of solutions of congruence
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If 
[image: image285.wmf]()2

PP

c
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 then from (2) and (3) we have


[image: image286.wmf]2
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w
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image287.wmf]k

 there are infinitely many primes 
[image: image288.wmf]P

 such that each of 
[image: image289.wmf]724

jp

+
[image: image290.wmf]kj

-

 is a prime.

If 
[image: image291.wmf]()1

PP

c

=-

 then from (2) and (3) we have
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（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image293.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image295.wmf]()(1)
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Example 1. Let 
[image: image296.wmf]3,5

k

=

. From (2) and(3) we have


[image: image297.wmf]2
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（7）

we prove that for 
[image: image298.wmf]3,5

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image299.wmf]5

k

>

.

From (2) and (3) we have


[image: image300.wmf]2
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（8）

We prove that for 
[image: image301.wmf]5

k

>

,
(1) contain infinitely many prime solutions

The New Prime theorem（403）
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Abstract

Using Jiang function we prove that 
[image: image303.wmf]726

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image304.wmf]k

 be a given odd prime.

[image: image305.wmf]726

,(1,,1)

PjPkjjk

+-=-

L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image310.wmf]()2
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 then from (2) and (3) we have


[image: image311.wmf]2
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image312.wmf]k

 there are infinitely many primes 
[image: image313.wmf]P

 such that each of 
[image: image314.wmf]726
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+
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-

 is a prime.

If 
[image: image316.wmf]()1
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 then from (2) and (3) we have
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（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image318.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image320.wmf]()(1)
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Example 1. Let 
[image: image321.wmf]3,7,23,67,727

k

=

. From (2) and(3) we have


[image: image322.wmf]2
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（7）

we prove that for 
[image: image323.wmf]3,7,23,67,727

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image324.wmf]3,7,23,67,727

k

¹

.

From (2) and (3) we have
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()0

J

w

¹

                    
（8）

We prove that for 
[image: image326.wmf]3,7,23,67,727

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（404）
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Abstract

Using Jiang function we prove that 
[image: image328.wmf]728

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image329.wmf]k

 be a given odd prime.

[image: image330.wmf]728
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L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image335.wmf]()2
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image337.wmf]k

 there are infinitely many primes 
[image: image338.wmf]P

 such that each of 
[image: image339.wmf]728
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+
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-

 is a prime.

If 
[image: image341.wmf]()1
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 then from (2) and (3) we have
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（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image343.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image345.wmf]()(1)
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Example 1. Let 
[image: image346.wmf]3,5,29,53

k

=

. From (2) and(3) we have
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we prove that for 
[image: image348.wmf]3,5,29,53

k

=

,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
[image: image349.wmf]3,5,29,53

k

¹

.

From (2) and (3) we have
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We prove that for 
[image: image351.wmf]3,5,29,53

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（405）
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Abstract

Using Jiang function we prove that 
[image: image353.wmf]730

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image354.wmf]k

 be a given odd prime.

[image: image355.wmf]730
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L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
[image: image360.wmf]()2
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image362.wmf]k

 there are infinitely many primes 
[image: image363.wmf]P

 such that each of 
[image: image364.wmf]730
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+
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-

 is a prime.

If 
[image: image366.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image368.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image371.wmf]3,11

k

=

. From (2) and(3) we have


[image: image372.wmf]2
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（7）

we prove that for 
[image: image373.wmf]3,11

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image374.wmf]3,11
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.

From (2) and (3) we have


[image: image375.wmf]2
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We prove that for 
[image: image376.wmf]3,11

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（406）
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Abstract

Using Jiang function we prove that 
[image: image378.wmf]732

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image379.wmf]k

 be a given odd prime.
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L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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[image: image384.wmf]1

732

1

0(mod),1,,1

k

j

jqkjPqP

-

=

éù

P+-º=-

ëû

L

        
（3）

If 
[image: image385.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image387.wmf]k

 there are infinitely many primes 
[image: image388.wmf]P

 such that each of 
[image: image389.wmf]732

jp

+
[image: image390.wmf]kj

-

 is a prime.

If 
[image: image391.wmf]()1
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c
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image393.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image396.wmf]3,5,7,13,367,733

k

=

. From (2) and(3) we have
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we prove that for 
[image: image398.wmf]3,5,7,13,367,733

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image399.wmf]3,5,7,13,367,733

k
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.

From (2) and (3) we have
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We prove that for 
[image: image401.wmf]3,5,7,13,367,733

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（407）
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Abstract

Using Jiang function we prove that 
[image: image403.wmf]734

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image404.wmf]k

 be a given odd prime.

[image: image405.wmf]734
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（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image410.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image412.wmf]k

 there are infinitely many primes 
[image: image413.wmf]P

 such that each of 
[image: image414.wmf]734

jp

+
[image: image415.wmf]kj

-

 is a prime.

If 
[image: image416.wmf]()1

PP

c
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image418.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image420.wmf]()(1)
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.

Example 1. Let 
[image: image421.wmf]3

k

=

. From (2) and(3) we have


[image: image422.wmf]2
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（7）

we prove that for 
[image: image423.wmf]3

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image424.wmf]3

k

>

.

From (2) and (3) we have
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We prove that for 
[image: image426.wmf]3

k

>

,
(1) contain infinitely many prime solutions

The New Prime theorem（408）
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Abstract

Using Jiang function we prove that 
[image: image428.wmf]736

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image429.wmf]k

 be a given odd prime.

[image: image430.wmf]736
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L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
[image: image432.wmf]P
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，
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 is the number of solutions of congruence
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If 
[image: image435.wmf]()2
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image437.wmf]k

 there are infinitely many primes 
[image: image438.wmf]P

 such that each of 
[image: image439.wmf]736

jp

+
[image: image440.wmf]kj

-

 is a prime.

If 
[image: image441.wmf]()1

PP

c

=-

 then from (2) and (3) we have
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（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image443.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image445.wmf]()(1)
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Example 1. Let 
[image: image446.wmf]3,5,17,47

k

=

. From (2) and(3) we have
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（7）

we prove that for 
[image: image448.wmf]3,5,17,47

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image449.wmf]3,5,17,47

k

¹

.

From (2) and (3) we have
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We prove that for 
[image: image451.wmf]3,5,17,47

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（409）
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Abstract

Using Jiang function we prove that 
[image: image453.wmf]738

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image454.wmf]k

 be a given odd prime.
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（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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，
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 is the number of solutions of congruence
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If 
[image: image460.wmf]()2
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image462.wmf]k

 there are infinitely many primes 
[image: image463.wmf]P

 such that each of 
[image: image464.wmf]738

jp

+
[image: image465.wmf]kj

-

 is a prime.

If 
[image: image466.wmf]()1

PP

c

=-

 then from (2) and (3) we have
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（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image468.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image470.wmf]()(1)
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Example 1. Let 
[image: image471.wmf]3,7,19,739

k

=

. From (2) and(3) we have
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（7）

we prove that for 
[image: image473.wmf]3,7,19,739

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image474.wmf]3,7,19,739

k

¹

.

From (2) and (3) we have


[image: image475.wmf]2
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（8）

We prove that for 
[image: image476.wmf]3,7,19,739

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（410）
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Abstract

Using Jiang function we prove that 
[image: image478.wmf]740

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image479.wmf]k

 be a given odd prime.
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,(1,,1)

PjPkjjk

+-=-

L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
[image: image482.wmf]P

P

w

=P

，
[image: image483.wmf]()

P

c

 is the number of solutions of congruence


[image: image484.wmf]1

740

1

0(mod),1,,1

k

j

jqkjPqP

-

=

éù

P+-º=-

ëû

L

        
（3）

If 
[image: image485.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image487.wmf]k

 there are infinitely many primes 
[image: image488.wmf]P

 such that each of 
[image: image489.wmf]740
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+
[image: image490.wmf]kj

-

 is a prime.

If 
[image: image491.wmf]()1

PP

c

=-

 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image493.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image495.wmf]()(1)
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Example 1. Let 
[image: image496.wmf]3,5,11,149

k

=

. From (2) and(3) we have


[image: image497.wmf]2
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（7）

we prove that for 
[image: image498.wmf]3,5,11,149

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image499.wmf]3,5,11,149

k

¹

.

From (2) and (3) we have


[image: image500.wmf]2
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（8）

We prove that for 
[image: image501.wmf]3,5,11,149

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（411）
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Abstract

Using Jiang function we prove that 
[image: image503.wmf]742

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image504.wmf]k

 be a given odd prime.
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L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image510.wmf]()2
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image512.wmf]k

 there are infinitely many primes 
[image: image513.wmf]P

 such that each of 
[image: image514.wmf]742

jp

+
[image: image515.wmf]kj

-

 is a prime.

If 
[image: image516.wmf]()1
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 then from (2) and (3) we have
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（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image518.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image521.wmf]3,107,743

k

=

. From (2) and(3) we have
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we prove that for 
[image: image523.wmf]3,107,743

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image524.wmf]3,107,743

k

¹

.

From (2) and (3) we have
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We prove that for 
[image: image526.wmf]3,107,743
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,
(1) contain infinitely many prime solutions

The New Prime theorem（412）
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Abstract

Using Jiang function we prove that 
[image: image528.wmf]744

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image529.wmf]k

 be a given odd prime.
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.              
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
[image: image535.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image537.wmf]k

 there are infinitely many primes 
[image: image538.wmf]P

 such that each of 
[image: image539.wmf]744
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+
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 is a prime.

If 
[image: image541.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image543.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image545.wmf]()(1)
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Example 1. Let 
[image: image546.wmf]3,5,7,13,373

k

=

. From (2) and(3) we have
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（7）

we prove that for 
[image: image548.wmf]3,5,7,13,373

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image549.wmf]3,5,7,13,373

k

¹

.

From (2) and (3) we have
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We prove that for 
[image: image551.wmf]3,5,7,13,373

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（413）
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Abstract

Using Jiang function we prove that 
[image: image553.wmf]746

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image554.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image560.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image562.wmf]k

 there are infinitely many primes 
[image: image563.wmf]P

 such that each of 
[image: image564.wmf]746
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+
[image: image565.wmf]kj

-

 is a prime.

If 
[image: image566.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
[image: image570.wmf]()(1)
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Example 1. Let 
[image: image571.wmf]3

k

=

. From (2) and(3) we have
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（7）

we prove that for 
[image: image573.wmf]3

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image574.wmf]3
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>

.

From (2) and (3) we have
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We prove that for 
[image: image576.wmf]3
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>

,
(1) contain infinitely many prime solutions

The New Prime theorem（414）
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Abstract

Using Jiang function we prove that 
[image: image578.wmf]748
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image579.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
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we prove that for 
[image: image598.wmf]3,5,23
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
[image: image601.wmf]3,5,23

k
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,
(1) contain infinitely many prime solutions

The New Prime theorem（415）
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Abstract

Using Jiang function we prove that 
[image: image603.wmf]750
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image604.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]


[image: image606.wmf]2

()[1()]

P

JPP

wc

=P--

                   
（2）

where 
[image: image607.wmf]P

P

w

=P

，
[image: image608.wmf]()

P

c

 is the number of solutions of congruence


[image: image609.wmf]1

750

1

0(mod),1,,1

k

j

jqkjPqP

-

=

éù

P+-º=-

ëû

L

        
（3）

If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image612.wmf]k

 there are infinitely many primes 
[image: image613.wmf]P

 such that each of 
[image: image614.wmf]750
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 is a prime.

If 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image621.wmf]3,7,11,31,151,751
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. From (2) and(3) we have
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we prove that for 
[image: image623.wmf]3,7,11,31,151,751

k
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image624.wmf]3,7,11,31,151,751
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.

From (2) and (3) we have
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We prove that for 
[image: image626.wmf]3,7,11,31,151,751

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（416）
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Abstract

Using Jiang function we prove that 
[image: image628.wmf]752
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image629.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image635.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image637.wmf]k

 there are infinitely many primes 
[image: image638.wmf]P

 such that each of 
[image: image639.wmf]752

jp

+
[image: image640.wmf]kj

-

 is a prime.

If 
[image: image641.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image643.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image646.wmf]3,5,17
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. From (2) and(3) we have
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we prove that for 
[image: image648.wmf]3,5,17
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
[image: image651.wmf]3,5,17
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,
(1) contain infinitely many prime solutions

The New Prime theorem（417）
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Abstract

Using Jiang function we prove that 
[image: image653.wmf]754
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+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image654.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]


[image: image656.wmf]2

()[1()]

P

JPP

wc

=P--

                   
（2）

where 
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image668.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image670.wmf]()(1)
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Example 1. Let 
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. From (2) and(3) we have
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we prove that for 
[image: image673.wmf]3,59

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image674.wmf]3,59
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.

From (2) and (3) we have
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We prove that for 
[image: image676.wmf]3,59
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,
(1) contain infinitely many prime solutions

The New Prime theorem（418）
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Abstract

Using Jiang function we prove that 
[image: image678.wmf]756
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image679.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image687.wmf]k

 there are infinitely many primes 
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 such that each of 
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If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image693.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image696.wmf]3,5,7,13,19,29,37,43,127,379,757
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. From (2) and(3) we have
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we prove that for 
[image: image698.wmf]3,5,7,13,19,29,37,43,127,379,757
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image699.wmf]3,5,7,13,19,29,37,43,127,379,757
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.

From (2) and (3) we have
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We prove that for 
[image: image701.wmf]3,5,7,13,19,29,37,43,127,379,757

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（419）
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Abstract

Using Jiang function we prove that 
[image: image703.wmf]758
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image704.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image712.wmf]k

 there are infinitely many primes 
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 such that each of 
[image: image714.wmf]758

jp

+
[image: image715.wmf]kj

-
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If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image718.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image721.wmf]3
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. From (2) and(3) we have
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we prove that for 
[image: image723.wmf]3
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image724.wmf]3
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From (2) and (3) we have


[image: image725.wmf]2

()0

J

w

¹

                    
（8）

We prove that for 
[image: image726.wmf]3

k
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,
(1) contain infinitely many prime solutions

The New Prime theorem（420）
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Abstract

Using Jiang function we prove that 
[image: image728.wmf]720
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image729.wmf]k

 be a given odd prime.

[image: image730.wmf]760

,(1,,1)

PjPkjjk

+-=-

L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image737.wmf]k

 there are infinitely many primes 
[image: image738.wmf]P

 such that each of 
[image: image739.wmf]760
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 is a prime.

If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image743.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image745.wmf]()(1)
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Example 1. Let 
[image: image746.wmf]3,5,11,41,191,761
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. From (2) and(3) we have


[image: image747.wmf]2

()0

J

w

=

                    
（7）

we prove that for 
[image: image748.wmf]3,5,11,41,191,761

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image749.wmf]3,5,11,41,191,761
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.

From (2) and (3) we have
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We prove that for 
[image: image751.wmf]3,5,11,41,191,761

k
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,
(1) contain infinitely many prime solutions

The New Prime theorem（421）
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Using Jiang function we prove that 
[image: image753.wmf]762
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image754.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image762.wmf]k

 there are infinitely many primes 
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 such that each of 
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image771.wmf]3,7
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. From (2) and(3) we have
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we prove that for 
[image: image773.wmf]3,7
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image774.wmf]3,7

k

¹

.

From (2) and (3) we have
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We prove that for 
[image: image776.wmf]3,7

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（422）


[image: image777.wmf]764

,(1,,1)

PjPkjjk

+-=-

L


Chun-Xuan Jiang

Jiangchunxuan@vip.sohu.com

Abstract

Using Jiang function we prove that 
[image: image778.wmf]764

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image779.wmf]k

 be a given odd prime.
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L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image785.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image787.wmf]k

 there are infinitely many primes 
[image: image788.wmf]P

 such that each of 
[image: image789.wmf]764

jp

+
[image: image790.wmf]kj

-

 is a prime.

If 
[image: image791.wmf]()1

PP

c
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 then from (2) and (3) we have
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（5）

We prove that (1) contain no prime solutions [1,2]

If 
[image: image793.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image795.wmf]()(1)
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Example 1. Let 
[image: image796.wmf]3,5,383
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. From (2) and(3) we have
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（7）

we prove that for 
[image: image798.wmf]3,5,383

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image799.wmf]3,5,383

k

¹

.

From (2) and (3) we have


[image: image800.wmf]2
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（8）

We prove that for 
[image: image801.wmf]3,5,383

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（423）
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Abstract

Using Jiang function we prove that 
[image: image803.wmf]766

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image804.wmf]k

 be a given odd prime.
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.              
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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，
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If 
[image: image810.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image812.wmf]k

 there are infinitely many primes 
[image: image813.wmf]P

 such that each of 
[image: image814.wmf]766
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+
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 is a prime.

If 
[image: image816.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image818.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image820.wmf]()(1)
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Example 1. Let 
[image: image821.wmf]3
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. From (2) and(3) we have
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（7）

we prove that for 
[image: image823.wmf]3

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image824.wmf]3
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.

From (2) and (3) we have
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We prove that for 
[image: image826.wmf]3

k

>

,
(1) contain infinitely many prime solutions

The New Prime theorem（424）
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Abstract

Using Jiang function we prove that 
[image: image828.wmf]768

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image829.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
[image: image835.wmf]()2
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c
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 then from (2) and (3) we have
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（4）

We prove that (1) contain infinitely many prime solutions that is for any 
[image: image837.wmf]k

 there are infinitely many primes 
[image: image838.wmf]P

 such that each of 
[image: image839.wmf]768
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+
[image: image840.wmf]kj

-

 is a prime.

If 
[image: image841.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image843.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image846.wmf]3,5,7,13,17,97,193,257,769

k

=

. From (2) and(3) we have
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（7）

we prove that for 
[image: image848.wmf]3,5,7,13,17,97,193,257,769

k

=

,

(1) contain no prime solutions. 1 is not a prime.
Example 2. Let 
[image: image849.wmf]3,5,7,13,17,97,193,257,769
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.

From (2) and (3) we have


[image: image850.wmf]2
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We prove that for 
[image: image851.wmf]3,5,7,13,17,97,193,257,769

k

¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（425）
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Abstract

Using Jiang function we prove that 
[image: image853.wmf]770

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image854.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image860.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image862.wmf]k

 there are infinitely many primes 
[image: image863.wmf]P

 such that each of 
[image: image864.wmf]770
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 is a prime.

If 
[image: image866.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image868.wmf]2

()0

J

w

¹

 then we have asymptotic formula [1,2]
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where 
[image: image870.wmf]()(1)
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Example 1. Let 
[image: image871.wmf]3,11,23,71
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=

. From (2) and(3) we have
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we prove that for 
[image: image873.wmf]3,11,23,71

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image874.wmf]3,11,23,71
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¹

.

From (2) and (3) we have
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We prove that for 
[image: image876.wmf]3,11,23,71
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¹

,
(1) contain infinitely many prime solutions

The New Prime theorem（426）
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Using Jiang function we prove that 
[image: image878.wmf]772

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image879.wmf]k

 be a given odd prime.
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,(1,,1)

PjPkjjk

+-=-

L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
[image: image885.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image887.wmf]k

 there are infinitely many primes 
[image: image888.wmf]P

 such that each of 
[image: image889.wmf]772
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 is a prime.

If 
[image: image891.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image893.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image896.wmf]3,5,773

k

=

. From (2) and(3) we have
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we prove that for 
[image: image898.wmf]3,5,773

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image899.wmf]3,5,773
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.

From (2) and (3) we have
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We prove that for 
[image: image901.wmf]3,5,773
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,
(1) contain infinitely many prime solutions

The New Prime theorem（427）
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Abstract

Using Jiang function we prove that 
[image: image903.wmf]774

jPkj
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image904.wmf]k

 be a given odd prime.
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.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
[image: image910.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image912.wmf]k

 there are infinitely many primes 
[image: image913.wmf]P

 such that each of 
[image: image914.wmf]774
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 is a prime.

If 
[image: image916.wmf]()1
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image918.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image920.wmf]()(1)
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Example 1. Let 
[image: image921.wmf]3,7,19
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=

. From (2) and(3) we have
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we prove that for 
[image: image923.wmf]3,7,19

k
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image924.wmf]3,7,19

k

¹

.

From (2) and (3) we have
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We prove that for 
[image: image926.wmf]3,7,19
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,
(1) contain infinitely many prime solutions

The New Prime theorem（428）
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Abstract

Using Jiang function we prove that 
[image: image928.wmf]776
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image929.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image937.wmf]k

 there are infinitely many primes 
[image: image938.wmf]P

 such that each of 
[image: image939.wmf]776
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 is a prime.

If 
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PP

c

=-

 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image943.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image946.wmf]3,5,389
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. From (2) and(3) we have
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we prove that for 
[image: image948.wmf]3,5,389

k

=

,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image949.wmf]3,5,389
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.

From (2) and (3) we have
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We prove that for 
[image: image951.wmf]3,5,389

k
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,
(1) contain infinitely many prime solutions

The New Prime theorem（429）
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Abstract

Using Jiang function we prove that 
[image: image953.wmf]778
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image954.wmf]k

 be a given odd prime.
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,(1,,1)

PjPkjjk

+-=-

L

.              
（1）

contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]


[image: image956.wmf]2

()[1()]

P

JPP

wc

=P--

                   
（2）

where 
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If 
[image: image960.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image962.wmf]k

 there are infinitely many primes 
[image: image963.wmf]P

 such that each of 
[image: image964.wmf]778
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 is a prime.

If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image968.wmf]2
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 then we have asymptotic formula [1,2]


[image: image969.wmf]{

}

1

778

2

1

()

(,2):~

(778)()log

k

k

kkk

J

N

NPNjPkjprime

N

ww

p

fw

-

-

=£+-=

 
（6）

where 
[image: image970.wmf]()(1)

P

P

fw

=P-

.

Example 1. Let 
[image: image971.wmf]3
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. From (2) and(3) we have
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we prove that for 
[image: image973.wmf]3
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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We prove that for 
[image: image976.wmf]3
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(1) contain infinitely many prime solutions

The New Prime theorem（430）
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Abstract

Using Jiang function we prove that 
[image: image978.wmf]780

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image979.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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PP

c

£-
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image987.wmf]k

 there are infinitely many primes 
[image: image988.wmf]P

 such that each of 
[image: image989.wmf]780
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 is a prime.

If 
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image993.wmf]2
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 then we have asymptotic formula [1,2]
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where 
[image: image995.wmf]()(1)
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Example 1. Let 
[image: image996.wmf]3,5,7,11,13,31,53,61,79,131,157
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. From (2) and(3) we have
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we prove that for 
[image: image998.wmf]3,5,7,11,13,31,53,61,79,131,157
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image999.wmf]3,5,7,11,13,31,53,61,79,131,157
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.

From (2) and (3) we have
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We prove that for 
[image: image1001.wmf]3,5,7,11,13,31,53,61,79,131,157
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,
(1) contain infinitely many prime solutions

The New Prime theorem（431）
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Abstract

Using Jiang function we prove that 
[image: image1003.wmf]782

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1004.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
[image: image1010.wmf]()2

PP

c

£-

 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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 is a prime.

If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image1021.wmf]3,47
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. From (2) and(3) we have
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we prove that for 
[image: image1023.wmf]3,47
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image1024.wmf]3,47
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From (2) and (3) we have
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We prove that for 
[image: image1026.wmf]3,47
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,
(1) contain infinitely many prime solutions

The New Prime theorem（432）
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Abstract

Using Jiang function we prove that 
[image: image1028.wmf]784

jPkj
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1029.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
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 such that each of 
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 is a prime.

If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image1043.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image1046.wmf]3,5,17,29,113,197
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. From (2) and(3) we have
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we prove that for 
[image: image1048.wmf]3,5,17,29,113,197

k
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image1049.wmf]3,5,17,29,113,197
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.

From (2) and (3) we have
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We prove that for 
[image: image1051.wmf]3,5,17,29,113,197
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,
(1) contain infinitely many prime solutions

The New Prime theorem（433）
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Abstract

Using Jiang function we prove that 
[image: image1053.wmf]786

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1054.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
[image: image1060.wmf]()2
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 then from (2) and (3) we have
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image1062.wmf]k

 there are infinitely many primes 
[image: image1063.wmf]P

 such that each of 
[image: image1064.wmf]786
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 is a prime.

If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image1068.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image1071.wmf]3,7,263,787
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. From (2) and(3) we have
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we prove that for 
[image: image1073.wmf]3,7,263,787
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image1074.wmf]3,7,263,787
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.

From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions

The New Prime theorem（434）
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Abstract

Using Jiang function we prove that 
[image: image1078.wmf]788

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1079.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image1087.wmf]k

 there are infinitely many primes 
[image: image1088.wmf]P

 such that each of 
[image: image1089.wmf]788
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 is a prime.

If 
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 then from (2) and (3) we have
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We prove that (1) contain no prime solutions [1,2]

If 
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image1096.wmf]3,5
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. From (2) and(3) we have
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we prove that for 
[image: image1098.wmf]3,5
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
[image: image1101.wmf]3,5
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,
(1) contain infinitely many prime solutions

The New Prime theorem（435）
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Abstract

Using Jiang function we prove that 
[image: image1103.wmf]790

jPkj

+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1104.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
[image: image1112.wmf]k

 there are infinitely many primes 
[image: image1113.wmf]P

 such that each of 
[image: image1114.wmf]790

jp

+
[image: image1115.wmf]kj

-
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If 
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We prove that (1) contain no prime solutions [1,2]

If 
[image: image1118.wmf]2
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 then we have asymptotic formula [1,2]
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where 
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Example 1. Let 
[image: image1121.wmf]3,11
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. From (2) and(3) we have
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we prove that for 
[image: image1123.wmf]3,11
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
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From (2) and (3) we have
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We prove that for 
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,
(1) contain infinitely many prime solutions

The New Prime theorem（436）
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Abstract

Using Jiang function we prove that 
[image: image1128.wmf]792
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+-

 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1129.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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where 
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If 
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 then from (2) and (3) we have


[image: image1136.wmf]2

()0

J

w

¹

                     
（4）

We prove that (1) contain infinitely many prime solutions that is for any 
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 there are infinitely many primes 
[image: image1138.wmf]P

 such that each of 
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If 
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We prove that (1) contain no prime solutions [1,2]

If 
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where 
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Example 1. Let 
[image: image1146.wmf]3,5,7,13,19,37,67,73,199,397
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. From (2) and(3) we have
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we prove that for 
[image: image1148.wmf]3,5,7,13,19,37,67,73,199,397
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,

(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image1149.wmf]3,5,7,13,19,37,67,73,199,397
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From (2) and (3) we have
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We prove that for 
[image: image1151.wmf]3,5,7,13,19,37,67,73,199,397
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(1) contain infinitely many prime solutions

The New Prime theorem（437）
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Abstract

Using Jiang function we prove that 
[image: image1153.wmf]794
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
[image: image1154.wmf]k

 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]

If 
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Example 1. Let 
[image: image1171.wmf]3

k

=

. From (2) and(3) we have


[image: image1172.wmf]2

()0

J

w

=

                    
（7）

we prove that for 
[image: image1173.wmf]3

k

=

,
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We prove that for 
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(1) contain infinitely many prime solutions

The New Prime theorem（438）
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Abstract

Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]

If 
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.
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We prove that for 
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(1) contain infinitely many prime solutions

The New Prime theorem（439）
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Abstract

Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]

If 
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.
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We prove that for 
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(1) contain infinitely many prime solutions

The New Prime theorem（440）
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Using Jiang function we prove that 
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 contain infinitely many prime solutions and no prime solutions.

Theorem. Let 
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 be a given odd prime.
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contain infinitely many prime solutions and no prime solutions.

Proof. We have Jiang function [1,2]
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If 
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We prove that (1) contain infinitely many prime solutions that is for any 
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We prove that (1) contain no prime solutions [1,2]

If 
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Example 1. Let 
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we prove that for 
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(1) contain no prime solutions. 1 is not a prime.

Example 2. Let 
[image: image1249.wmf]3,5,11,17,41,101,401

k

¹

.

From (2) and (3) we have
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We prove that for 
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(1) contain infinitely many prime solutions

Remark. The prime number theory is basically to count the Jiang function 
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[1,2], which can count the number of prime numbers. The prime distribution is not random. But Hardy-Littlewood prime 
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 is false [3-17], which cannot count the number of prime numbers[3].
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