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Abstract:In this paper we deal with different generalizations of b-vex functions. Some known properties of convex
functions are studied for b-vex functions. Stress is given to establish certain interrelations among these functions.
These results are also extended for vector valued functions on the lines of work done by [8].
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Introduction
The class of convex functions has been extended to a class of b-vex functions by [1], which are quite

similar to (o, A.) -concave functions introduced by [2]. We now define b-vex functions and study some of their
properties.

Let X be a non-empty convex subset of R" | and let R . denote the set of non-negative real numbers. Let
f:X—>R,b:XxXx[0,1] >R, . We now define b-vex functions on the lines of [1] by taking

b, (x,u,A) =Ab(x,u,A) and b, (x,u,A) =1-2Ab(x, u, 1), where b, (x,u,A) >0 and b, (x,u,1)2>0.

Definition 1 : The function f is said to be b-vex at each u € X. If there exists a function b(X, u, A) such that, for
xeX, 0<A<1

f[Ax + (1 —-2)u] <Ab(x,u, A) f(x)+ (1 —Ab(x,u, A)]f(u)
where Ab(X, u,A)<1. fis said to be b-vex on X if it is v-vex at each u € X . For the sake of brevity, the
argument of b is omitted unless needed for specification.

Definition 2 : Given S € R" X R, S is said to be b-vex set if (X, ), (u, B) €S imply that for 0 <A <1
(Ox + (1= 1) u, Aba +(1-Ab)B) €S
A characterization of b-vex functions is now presented in terms of b-vexity of the epigraph E(f), where

E(f)={(x,0c)|xeX, aeR, f(x)Soc}

Theorem 1 : A numerical function f defined on a convex subset X of R" is b-vex if and only if E(f) is a b-vex set

in R"xR.

Proof : Suppose that f is b-vex on X. Let (X, o), (u, B) € E(f) . Then f(x) <o and f(u) <. Since fis b-vex

onX, for 0 <A<,
fOX + (1-A)u) < AbF(x) + (1 - Ab) f(u)

Aba + (1-24b) B

IAIA

Thus, for 0<A <1,
(Ax+({1—-2)u, Aba+ (1-Ab)BeE(f)
Hence, E(f) is a b-vex set.
Conversely, assume that E(f) is a b-vex set. Let X, u € X . Then (X, f(x)) € E(f), (u, f(u)) € E(f). Thus, for

0<A<l.
(O + (1= 1) u, Abf(x)+ (1—Ab) f(u)) € E(f)
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and it follows that, for 0 <A <1
f(Ax+ (1 —-2)u) < Abf(x)+ (1—-2Ab) f(u)

Hence, fis a b-vex function on X.

Theorem 2 : If (S,) ._, is a family of b-vex sets in R" x R, then their intersection ﬂ S, isalso a b-vex set.
iel
Proof : Let (X, ), (u,P) € m S, and let 0< A <1. Then for each i€, (x,a), (u,B)€S,. Since S, is a
iel
b-vex set, for each 1 € I, it follows that
(Ax +(1=2X)u, Aba +(1-Ab)B) eSS,
Thus, for 0 <A <1

(x + (1=, Aba+(1-Ab)B) e[ S,

Hence, the result follows.

Theorem 3 : If (f.),_, is a family of numerical functions which are b-vex and bounded from above on a convex

set Xin R", then the numerical function
f(x) =sup f, (x) is a b-vex function on X.

iel

Proof : Since each f, isa b-vex function on X, its epigraph

E(fi)={(x,0c)|xeX, aeR, fi(x)éoc}
is a b-vex set in R" xR . Therefore, their intersection

ﬂ E(f) = {(x,0)|xeX, aeR, fi(x)<a, iel}

iel

={(x,oc)|xeX, aeR, f(X)Soc}

is also a b-vex set in R" X R, by Theorem 2. This intersection is the epigraph of f. Hence, by Theorem 1, fis a b-
vex function on X.

A convex function defined on some open set is a continuous function [6]. But it can be seen from the
following example that it is not necessarily true for a b-vex function.

Example 1 : Let X = 10, 2[. Define a function f : X — R by

0 if0<x<l
f(x)=

X if1<x<2
Let b: X x X[0,1]—> R, be defined by
A(u—x)/u if x<u
b(x,u,A)= < (u+A(x—-u))/Ax ifx>u,A#0
1 if x>u,A=0

It can be seen that fis a b-vex function and epigraph E(f) of f is a b-vex set in R x R, but f is not continuous at x = 1.
Conclusion

Every convex function is b-vex, where b(X, u, ) =1. However, the converse is not necessarily true. The

function f considered in Example 1 is b-vex but is not convex, because for x = 1/2, u = 3/2, A=1/2,

fOx +(1—2)u) > Af(x)+(1=1)f(u).
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