A study of b-vex function with convex optimization

Sachin Kumar Agrawal ${ }^{1}$, Navneet Rohela ${ }^{2}$, Mayank Pawar ${ }^{3}$
${ }^{1,2}$ Moradabad Institute of Technology, Moradabad
${ }^{3}$ Teerthanker Mahaveer University, Moradabad

Abstract

In this paper we deal with different generalizations of b-vex functions. Some known properties of convex functions are studied for b-vex functions. Stress is given to establish certain interrelations among these functions. These results are also extended for vector valued functions on the lines of work done by [8]. [Sachin Kumar Agrawal, Navneet Rohel, Mayank Pawar. A study of b-vex function with convex optimization Researcher 2013;5(2):36-38]. (ISSN: 1553-9865). http://www.sciencepub.net/researcher. 7

Keywords: b-vex functions, convex optimization, Concave Optimization, non linear programming

Introduction

The class of convex functions has been extended to a class of b-vex functions by [1], which are quite similar to (α, λ)-concave functions introduced by [2]. We now define b-vex functions and study some of their properties.

Let X be a non-empty convex subset of R^{n}, and let R_{+}denote the set of non-negative real numbers. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}, \mathrm{b}: \mathrm{X} \times \mathrm{X} \times[0,1] \rightarrow \mathrm{R}_{+}$. We now define b -vex functions on the lines of [1] by taking $\mathrm{b}_{1}(\mathrm{x}, \mathrm{u}, \lambda)=\lambda \mathrm{b}(\mathrm{x}, \mathrm{u}, \lambda)$ and $\mathrm{b}_{2}(\mathrm{x}, \mathrm{u}, \lambda)=1-\lambda \mathrm{b}(\mathrm{x}, \mathrm{u}, \lambda)$, where $\mathrm{b}_{1}(\mathrm{x}, \mathrm{u}, \lambda) \geq 0$ and $\mathrm{b}_{2}(\mathrm{x}, \mathrm{u}, \lambda) \geq 0$.

Definition 1 : The function f is said to be b-vex at each $u \in X$. If there exists a function $b(x, u, \lambda)$ such that, for $\mathrm{x} \in \mathrm{X}, 0 \leq \lambda \leq 1$
$\mathrm{f}[\lambda \mathrm{x}+(1-\lambda) \mathrm{u}] \leq \lambda \mathrm{b}(\mathrm{x}, \mathrm{u}, \lambda) \mathrm{f}(\mathrm{x})+(1-\lambda \mathrm{b}(\mathrm{x}, \mathrm{u}, \lambda)] \mathrm{f}(\mathrm{u})$
where $\lambda b(x, u, \lambda) \leq 1$. f is said to be b-vex on X if it is v-vex at each $u \in X$. For the sake of brevity, the argument of b is omitted unless needed for specification.

Definition 2: Given $S \subseteq R^{n} \times R$, S is said to be b-vex set if $(x, \alpha),(u, \beta) \in S$ imply that for $0 \leq \lambda \leq 1$

$$
(\lambda x+(1-\lambda) u, \lambda b \alpha+(1-\lambda b) \beta) \in S
$$

A characterization of b-vex functions is now presented in terms of b-vexity of the epigraph $E(f)$, where

$$
E(f)=\{(x, \alpha) \mid x \in X, \quad \alpha \in R, f(x) \leq \alpha\}
$$

Theorem 1 : A numerical function f defined on a convex subset X of R^{n} is b-vex if and only if $E(f)$ is a b-vex set in $\mathrm{R}^{\mathrm{n}} \times \mathrm{R}$.
Proof : Suppose that f is b-vex on X. Let $(x, \alpha),(u, \beta) \in E(f)$. Then $f(x) \leq \alpha$ and $f(u) \leq \beta$. Since f is b-vex on X, for $0 \leq \lambda \leq 1$,

$$
\begin{aligned}
\mathrm{f}(\lambda \mathrm{x}+(1-\lambda) \mathrm{u}) & \leq \lambda \mathrm{bf}(\mathrm{x})+(1-\lambda \mathrm{b}) \mathrm{f}(\mathrm{u}) \\
& \leq \lambda \mathrm{b} \alpha+(1-\lambda \mathrm{b}) \beta
\end{aligned}
$$

Thus, for $0 \leq \lambda \leq 1$,
$(\lambda x+(1-\lambda) u, \quad \lambda b \alpha+(1-\lambda b) \beta \in E(f)$
Hence, $\mathrm{E}(\mathrm{f})$ is a b-vex set.
Conversely, assume that $E(f)$ is a b-vex set. Let $x, u \in X$. Then $(x, f(x)) \in E(f),(u, f(u)) \in E(f)$. Thus, for $0 \leq \lambda \leq 1$.

$$
(\lambda x+(1-\lambda) u, \lambda b f(x)+(1-\lambda b) f(u)) \in E(f)
$$

and it follows that, for $0 \leq \lambda \leq 1$

$$
\mathrm{f}(\lambda \mathrm{x}+(1-\lambda) \mathrm{u}) \leq \lambda b f(\mathrm{x})+(1-\lambda b) \mathrm{f}(\mathrm{u})
$$

Hence, f is a b-vex function on X.

Theorem 2: If $\left(S_{i}\right)_{i \in I}$ is a family of b-vex sets in $R^{n} \times R$, then their intersection $\bigcap_{i \in I} S_{i}$ is also a b-vex set.
Proof : Let $(x, \alpha),(u, \beta) \in \bigcap_{i \in I} S_{i}$ and let $0 \leq \lambda \leq 1$. Then for each $i \in I,(x, \alpha),(u, \beta) \in S_{i}$. Since S_{i} is a b-vex set, for each $\mathrm{i} \in \mathrm{I}$, it follows that

$$
(\lambda x+(1-\lambda) u, \quad \lambda b \alpha+(1-\lambda b) \beta) \in S_{i}
$$

Thus, for $0 \leq \lambda \leq 1$

$$
(\lambda x+(1-\lambda) u, \lambda b \alpha+(1-\lambda b) \beta) \in \bigcap_{i \in I} S_{i}
$$

Hence, the result follows.

Theorem 3 : If $\left(f_{i}\right)_{i \in I}$ is a family of numerical functions which are b-vex and bounded from above on a convex set X in R^{n}, then the numerical function

$$
f(x)=\sup _{i \in I} f_{i}(x) \text { is a b-vex function on } X .
$$

Proof : Since each f_{i} is a b-vex function on X, its epigraph

$$
E\left(f_{i}\right)=\left\{(x, \alpha) \mid x \in X, \quad \alpha \in R, f_{i}(x) \leq \alpha\right\}
$$

is a b-vex set in $\mathrm{R}^{\mathrm{n}} \times \mathrm{R}$. Therefore, their intersection

$$
\begin{aligned}
\bigcap_{i \in \mathrm{I}} \mathrm{E}\left(\mathrm{f}_{\mathrm{i}}\right) & =\left\{(\mathrm{x}, \alpha) \mid \mathrm{x} \in \mathrm{X}, \alpha \in \mathrm{R}, \mathrm{f}_{\mathrm{i}}(\mathrm{x}) \leq \alpha, \mathrm{i} \in \mathrm{I}\right\} \\
& =\{(\mathrm{x}, \alpha) \mid \mathrm{x} \in \mathrm{X}, \quad \alpha \in \mathrm{R}, \mathrm{f}(\mathrm{x}) \leq \alpha\}
\end{aligned}
$$

is also a b-vex set in $R^{n} \times R$, by Theorem 2. This intersection is the epigraph of f. Hence, by Theorem 1 , f is a bvex function on X .

A convex function defined on some open set is a continuous function [6]. But it can be seen from the following example that it is not necessarily true for a b-vex function.
Example 1 : Let $\mathrm{X}=] 0,2[$. Define a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}$ by

$$
f(x)= \begin{cases}0 & \text { if } 0<x<1 \\ x & \text { if } 1 \leq x<2\end{cases}
$$

Let $\mathrm{b}: \mathrm{X} \times \mathrm{X}[0,1] \rightarrow \mathrm{R}_{+}$be defined by

$$
\mathrm{b}(\mathrm{x}, \mathrm{u}, \lambda)= \begin{cases}\lambda(\mathrm{u}-\mathrm{x}) / \mathrm{u} & \text { if } \mathrm{x} \leq \mathrm{u} \\ (\mathrm{u}+\lambda(\mathrm{x}-\mathrm{u})) / \lambda \mathrm{x} & \text { if } \mathrm{x}>\mathrm{u}, \lambda \neq 0 \\ 1 & \text { if } \mathrm{x}>\mathrm{u}, \lambda=0\end{cases}
$$

It can be seen that f is a b-vex function and epigraph $E(f)$ of f is a b-vex set in $R x R$, but f is not continuous at $x=1$.

Conclusion

Every convex function is b-vex, where $b(x, u, \lambda) \equiv 1$. However, the converse is not necessarily true. The
function f considered in Example 1 is b-vex but is not convex, because for $\mathrm{x}=1 / 2, \mathrm{u}=3 / 2, \lambda=1 / 2$,

$$
\mathrm{f}(\lambda \mathrm{x}+(1-\lambda) \mathrm{u})>\lambda \mathrm{f}(\mathrm{x})+(1-\lambda) \mathrm{f}(\mathrm{u})
$$

References

[1]. C. R. Bector and C. Singh, B-vex Functions, Journal of Optimization Theory and Applications, 71(2), 237-253(1991).
[2]. E. Castagnoli and P. Mazzoleni, About Derivatives of Some Generalized Concave Functions, Continuous-Time Fractional and Multiobjective Programming, edited by C. Singh and B. K. Dass, Analytic Publishing Company, New Delhi, 53-63(1989).
[3]. Goran Lesaja And Verlynda N. Slaughter, Interior-Point Algorithms For A Class Of Convex Optimization Problems, Yugoslav Journal Of Operations Research Volume 19 Number 2, 239-248(2009).
[4]. J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization. Springer, 2000.
[5]. M.P. Bendsøe, A. Ben-Tal and J. Zowe, "Optimization methods for truss geometry and topology design," Structural Optimization, vol. 7, pp. 141-159, (1994).
[6]. O. L. Mangasarian, Non-linear Programming, McGraw-Hill, New York(1969).
[7]. Stephen Boyd and Lieven Vandenberghe, " Convex Optimization", cambridge university press.
[8]. V. Jeyakumar and B. Mond, On Generalized Convex Mathematical Programming, Journal of Australian Mathematical Society, Ser. (B), 34(1), 4353 (1992).

