
 Report and Opinion 2025;17(2) http://www.sciencepub.net/report ROJ

1

Study On Software Performance Feedback: State Of The Art

1Dr. Gulshan Kumar and 2Dr. Vivek Kumar

1Assistant Professor in Computer Science, Rawal Institutions, Sohna Road, Near Zakopur, Faridabad,

Haryana (India)
2Assosiate Professor in Computer Science, Saharanpur Institute of Advance Studies, Saharanpur Uttar

Pradesh (India)

 Email- 1Gulshan_dixit@rediffmail.com; viveks865@gmail.com

Abstract: The problem of interpreting the performance analysis results is still quite critical, since it is

difficult to understand mean values, variances, and probability distributions. Additionally, a large gap exists

between the representation of performance analysis results and the feedback expected by software architects.

The former usually contains numbers (such as mean response time, throughput variance), whereas the latter

should embed architectural suggestions useful to overcome performance problems (such as split a software

component in two components and re-deploy one of them). Such activities are today exclusively based on

the analysts’ experience, and therefore their effectiveness often suffers the lack of automation. In this

scenario, we believe that the automated generation of feedback may work towards the problem solution,

since it has the important role of making performance analysis results usable at the software architectural

level. It means, for example, that from a bad throughput value, it is possible to identify the software

components and/or interactions responsible for that bad value.

[Kumar, G. and Kumar, V. STUDY ON SOFTWARE PERFORMANCE FEEDBACK: STATE OF

THE ART. Rep Opinion 2025;17(2):1-4]. ISSN 1553-9873 (print); ISSN 2375-7205 (online).

http://www.sciencepub.net/report. 01. doi:10.7537/marsroj170225.01

Keywords: Modeling Software Reliability; Imperfect Debugging

Introduction:

Williams et al. in [10] introduced the

PASA (Performance Assessment of Software

Architectures) approach. It aims at achieving

good performance results [8] through a deep

understanding of the architectural features.

This is the approach that firstly introduces the

concept of antipatterns as support to the

identification of performance problems in

software architectural models as well as in the

formulation of architectural alternatives.

However, this approach is based on the

interactions between software architects and

performance experts, therefore its level of

automation is still low. Cortellessa et al. in [3]

introduced a first proposal of automated

generation of feedback from the software

performance analysis, where performance

antipatterns play a key role in the detection of

performance flaws. However, this approach

considers a restricted set of antipatterns, and it

uses informal interpretation matrices as

support. Performance scenarios are described

(e.g. the throughput is lower than the user

requirement, and the response time is greater

than the user requirement) and, if needed, some

actions to improve such scenarios are outlined.

The main limitation of this approach is that the

interpretation of performance results is only

demanded to the analysis of Layered Queue

Networks (LQN) [1], i.e. a performance model.

Such knowledge is not enriched with the

features coming from the software

architectural models, thus to hide feasible

refactoring actions. Enterprise technologies

and EJB performance antipatterns are analyzed

by Parsons et al. in [8]: antipatterns are

represented as sets of rules loaded into a JESS

[2] engine, and written in a Lisp-like syntax

[10]. A rule-based performance diagnosis tool,

named Performance Antipattern Detection

(PAD), is presented. However, it deals with

Component Based Enterprise Systems,

targeting only Enterprise Java Bean (EJB)

applications. It is based on the monitoring of

the data from running systems, it extracts the

run-time system design and detects EJB

antipatterns by applying rules to it. Hence, the

scope of [8] is restricted to such domain, and

performance problems can neither be detected

in other technology contexts nor in the early

development stages. By taking a wider look out

of the performance domain, the management of

antipatterns is a quite recent research topic,

whereas there has already been a significant

effort in the area of software design patterns. It

is out of scope to address such wide area, but it

is worth to mention some approaches dealing

with patterns. Elaasar et al. in [5] introduced a

metamodeling approach to pattern

http://www.sciencepub.net/report
mailto:1Gulshan_dixit@rediffmail.com
mailto:viveks865@gmail.com
http://www.sciencepub.net/report
http://www.dx.doi.org/10.7537/marsroj170225.01

 Report and Opinion 2025;17(2) http://www.sciencepub.net/report ROJ

2

specification. In the context of the OMGs 4-

layer metamodeling architecture, the authors

propose a pattern specification language (i.e.

Epattern, at the M3 level) used to specify

patterns in any MOF-compliant modeling

language at the M2 layer. France et al. in [9]

introduced a UML-based pattern specification

technique. Design patterns are defined as

models in terms of UML metamodel concepts:

a pattern model describes the participants of a

pattern and the relations between them in a

graphical notation by means of roles, i.e. the

properties that a UML model element must

have to match the corresponding pattern

occurrence.

ANTIPATTERN-BASED APPROACHES

The term Antipattern appeared for the

first time in [3] in contrast to the trend of focus

on positive and constructive solutions.

Differently from patterns, antipatterns look at

the negative features of a software system and

describe commonly occurring solutions to

problems that generate negative consequences.

Antipatterns have been applied in different

domains. For example, in [8] data-flow

antipatterns help to discover errors in

workflows and are formalized through the

CTL* temporal logic. As another example, in

[1] antipatterns help to discover multi

threading problems of Java applications and

are specified through the LTL temporal logic.

Performance Antipatterns, as the name

suggests, deal with performance issues of the

software systems. They have been previously

documented and discussed in different works:

technology-independent performance

antipatterns have been defined in [3];

technologyspecific antipatterns have been

defined in [5] and [7].

RULE-BASED APPROACHES

Barber et al. in [21] introduced heuristic

algorithms that in presence of detected system

bottlenecks provide alternative solutions to

remove them. The heuristics are based on

architectural metrics that help to compare

different solutions. In a Domain Reference

Architecture (DRA) the modification of

functions and data allocation can affect non-

functional properties (for example,

performance-related properties such as

component utilization). The tool RARE guides

the derivation process by suggesting

allocations based on heuristics driven by static

architectural properties. The tool ARCADE

extends the RARE scope by providing

dynamic property measures. ARCADE

evaluation results subsequently fed back to

RARE can guide additional heuristics that

further refine the architecture. However, it

basically identifies and solve only software

bottlenecks, more complex problems are not

recognized. Dobrzanski et al. in [1] tackled the

problem of refactoring UML models. In

particular, bad smells are defined as structures

that suggest possible problems in the system in

terms of functional and non-functional aspects.

Refactoring operations are suggested in the

presence of bad smells. Rules for refactoring

are formally defined, and they take into

account the following features: (i) cross

integration of structure and behavior; (ii)

support for component-based development via

composite structures; and (iii) integration of

action semantics with behavioral constructs.

However, no specific performance issue is

analyzed, and refactoring is not driven by

unfulfilled requirements. McGregor et al. in [1]

proposed a framework (ArchE) to support the

software designers in creating architectures

that meet quality requirements. It embodies

knowledge of quality attributes and the relation

between the achievement of quality

requirements and architectural design. It helps

to create architectural models by collecting

requirements (in form of scenarios) and the

information needed to analyze the quality

criteria for the requirements. It additionally

provides the evaluation tools for modifiability

or performance analysis. However, the

suggestions (or tactics) are not well explained,

and it is not clear at which extent the approach

can be applied. Kavimandan et al. in [8]

presented an approach to optimize deployment

and configuration decisions in the context of

distributed, realtime, and embedded (DRE)

componentbased systems. Bin packing

algorithms have been enhanced, and

schedulability analysis have been used to make

fine-grained assignments that indicate how

components are allocated to different

middleware containers, since they are known

to impact on the system performance and

resource consumption. However, the scope of

this approach is limited to deployment and

configuration features. Xu in [8] presented an

approach to software performance diagnosis

that identifies performance flaws before the

software system implementation. It defines a

set of rules (specified with the Jess rule engine

[2]) aimed at detecting patterns of interaction

between resources. The method is applied to

UML [2] that employ standard profiles, i.e. the

SPT or Schedulability, Performance and Time

profile [4] and its successor MARTE [3].

The software architectural models are

translated in a performance model, i.e. Layered

Queueing Networks (LQNs) [9], and then

analyzed. The approach limits the detection to

http://www.sciencepub.net/report

 Report and Opinion 2025;17(2) http://www.sciencepub.net/report ROJ

3

bottlenecks and long execution paths identified

and removed at the level of the LQN

performance model. The actions to solve the

performance issues are: change the

configuration, i.e. increase the size of a buffer

pool or the amount of existing processors; and

change the design, i.e. increase parallelism and

splitting the execution of task in synchronous

and asynchronous parts. The overall approach

applies only to LQN models, hence its

portability to other notations is yet to be proven

and it may be quite complex

SEARCH-BASED APPROACHES

A wide range of different optimization

and search techniques have been introduced in

the field of Search-Based Software

Engineering (SBSE) [7], i.e. a software

engineering discipline in which search-based

optimization algorithms are used to address

problems where a suitable balance between

competing and potentially conflicting goals has

to be found. Two key ingredients are required:

(i) the representation of the problem; (ii) the

definition of a fitness function. In fact, SBSE

usually applies to problems in which there are

numerous candidate solutions and where there

is a fitness function that can guide the search

process to locate reasonably good solutions. A

suitable representation of the problem allows

to automatically explore the search space for

the solutions that best fit the fitness function [2]

that drives towards the sequence of the

refactoring steps to apply to this system (i.e.

altering its architectural structure without

altering its semantics). In the software

performance domain both the suitable

representation of the problem and the

formulation of the fitness function are not

trivial tasks, since the performance analysis

results are derived from many uncertainties

like the workload, the operational profile, etc.

that might completely modify the perception of

considering candidate solutions as good ones.

Some assumptions can be introduced to

simplify the problem and some design options

can be explicitly defined in advance to

constitute the population [2] on which search

based optimization algorithms apply. However,

we believe that in the performance domain it is

of crucial relevance to find a synergy between

the search techniques that involve the

definition of a fitness function to automatically

capture what is required from the system, and

the antipatterns that might support such

function with the knowledge of bad practices

and suggest common solutions, in order to

quickly converge towards performance

improvements. In fact, as recently outlined in

[1], there is a mutually beneficial relationship

between SBSE and predictive models. In

particular eleven broad areas of open problems

(e.g. balancing functional, nonfunctional

properties of predictive models) in SBSE for

predictive modeling are discussed, explaining

how techniques emerging from the SBSE

community may find potentially innovative

applications in predictive modeling.

DESIGN SPACE EXPLORATION

APPROACHES

Zheng et al. in [4] described an approach

to find optimal deployment and scheduling

priorities for tasks in a class of distributed real-

time systems. In particular, it is intended to

evaluate the deployment of such tasks by

applying a heuristic search strategy to LQN

models. However, its scope is restricted to

adjust the priorities of tasks competing for a

processor, and the only refactoring action is to

change the allocation of tasks to processors.

Bondarev et al. in [5] proposed a design space

exploration methodology, i.e. DeSiX (DEsign,

SImulate, eXplore), for software component-

based systems. It adopts multidimensional

quality attribute analysis and it is based on (i)

various types of models for software

components, processing nodes, memories and

bus links, (ii) scenarios of system critical

execution, allowing the designer to focus only

on relevant static and dynamic system

configurations, (iii) simulation of tasks

automatically reconstructed for each scenario,

and (iv) Pareto curves [4] for identification of

optimal architecture alternatives. An evolution

of [3] can be found in [2], where a design space

exploration framework for component-based

software systems is presented. It allows an

architect to get insight into a space of possible

design alternatives with further evaluation and

comparison of these alternatives. However, it

requires a manual definition of design

alternatives of software and hardware

architectures, and it is meant to only identify

bottlenecks. Ipek et al. in [8] described an

approach to automatically explore the design

space for hardware architectures, such as

multiprocessors or memory hierarchies. The

multiple design space points are simulated and

the results are used to train a neural network.

Such network can be solved quickly for

different architecture candidates and delivers

accurate results with a prediction error of less

than 5%. However, the approach is limited to

hardware properties, whereas software

architectures are more complex, because

architectural models spread on a wide rage of

features.

METAHEURISTIC APPROACHES

Canfora et al. in [5] used genetic algorithms for

http://www.sciencepub.net/report

 Report and Opinion 2025;17(2) http://www.sciencepub.net/report ROJ

4

Quality of Service (QoS)-aware service

composition, i.e. to determine a set of concrete

services to be bound to the abstract ones in the

workflow of a composite service. However,

each basic service is considered as a black-box

element, where performance metrics are fixed

to a certain unit (e.g. cost=5, resp.time=10),

and the genetic algorithms search the best

solutions by evaluating the composition

options. Hence, no real feedback (in terms of

refactoring actions in the software architectural

model such as split a component) is given to

the designer, with the exception of pre-defined

basic services. Aleti et al. in [6] presented a

framework for the optimization of embedded

system architectures. In particular, it uses the

AADL (Architecture Analysis and Description

Language) [7] as the underlying architecture

description language and provides plug-in

mechanisms to replace the optimization engine,

the quality evaluation algorithms and the

constraints checking. Architectural models are

optimized with evolutionary algorithms

considering multiple arbitrary quality criteria.

However, the only refactoring action the

framework currently allows is the component

re-deployment. Martens et al. in [8] presented

an approach for a performance-oriented design

space exploration of component-based

software architectures. An evolution of this

work can be found in [9] where meta-heuristic

search techniques are used for improving

performance, reliability, and costs of of

component-based software systems. In

particular, evolutionary algorithms search the

architectural design space for optimal trade-

offs by means of Pareto curves. However, this

approach is quite time-consuming, because it

uses random changes (spanning on all feasible

solutions) of the architecture, and the

optimality is not guaranteed.

References

1. Franco-Santos, M., Kennerley, M., Micheli,

P., Martinez, V., Mason, S., Marr, B., et al.

(2007). Towards a definition of a business

performance measurement system.

International Journal of Operations and

Production Management, 27, 784–801.

2. Galbraith, J. R. (1973). Designing complex

organizations. Massachusetts:

AddisonWesley Publishing, Reading.

Garengo, P. (2009). Performance

measurement system in SMEs taking part

to quality award programs. Total Quality

Management and Business Excellence, 20,

91–105.

3. Garengo, P., Biazzo, S., & Bititci, U. S.

(2005). Performance measurement

systems in SMEs: A review for a research

agenda. International Journal of

Management Reviews, 7, 25–47.

4. Kroes, J. R., & Ghosh, S. (2010).

Outsourcing congruence with competitive

priorities: Impact on supply chain and firm

performance. Journal of Operations

Management, 28, 124–143.

5. Kueng, P. (2001). Performance

measurement systems in the service sector

– The potential of IT is not yet utilized,

internal working paper no. 01–05,

Department of Informatics, University of

Fribourg, Rue Faucingy 2, 1700 Fribourg,

Switzerland.

6. Leavitt, H. J., & Whistler, T. L. (1958).

Management in the 1980s. Harvard

Business Review, 41–48.

7. Marchand, M., & Raymond, L. (2008).

Researching performance measurement

systems – An information systems

perspective. International Journal of

Operations and Production Management,

28(7), 663–686.

8. Schonberger, R. J. (1982). Japanese

manufacturing techniques: Nine hidden

lessons in simplicity. The Free Press

Publishers. Shepherd, C., & Gunter, H.

(2006). Measuring supply chain

performance: Current research and future

directions. International Journal of

Productivity and Performance

Management, 55, 242–258.

9. Skinner, W. (1974). The decline, fall, and

renewal of manufacturing. Industrial

Engineering, 32, 38.

10. Wise, R., & Baumgartner, P. (1999). Go

downstream: The new profit imperative in

manufacturing. Harvard Business Review,

77, 133–141.

11. Woodruff, R. B. (1997). Customer value:

The next source for competitive advantage.

Journal of the Academy of Marketing

Science, 25, 139–153.

12. Yamakawa, T., Ahmed, S., Kelston, A.

(2009). The BRICs as drivers of global

consumption, Goldman sachs global

economics, commodities and strategy

research (06.08.09).

1/15/1015

http://www.sciencepub.net/report

