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Abstract: This paper witnesses the combination of an efficient transformation and Exp-function method to construct 

generalized solitary wave solutions of the nonlinear Korteweg de-Vries (KdVs) equations of fractional-order. 

Computational work and subsequent numerical results re-confirm the efficiency of proposed algorithm. It is 

observed that suggested scheme is highly reliable and may be extended to other nonlinear differential equations of 

fractional order. 
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1. Introduction 

The subject of factional calculus [1, 2] is a 

rapidly growing field of research, at the interface 

between chaos, probability, differential equations, 

and mathematical physics. In recent years, nonlinear 

fractional differential equations (NFDEs) have gained 

much interest due to exact description of nonlinear 

phenomena of many real-time problems. The 

fractional calculus is also considered as a novel topic 

[3, 4]; has gained considerable popularity and 

importance during the recent past. It has been the 

subject of specialized conferences, workshops and 

treatises or so, mainly due to its demonstrated 

applications in numerous seemingly diverse and 

widespread fields of science and engineering. Some 

of the areas of present-day applications of fractional 

models [5-8] include fluid flow, solute transport or 

dynamical processes in self-similar and porous 

structures, diffusive transport akin to diffusion, 

material viscoelastic theory, electromagnetic theory, 

dynamics of earthquakes, control theory of dynamical 

systems, optics and signal processing, bio-sciences, 

economics, geology, astrophysics, probability and 

statistics, chemical physics, and so on. As a 

consequence, there has been an intensive 

development of the theory of fractional differential 

equations, see [1–8] and the references therein. 

Recently, He and Wu [9] developed a very efficient 

technique which is called exp-function method for 

solving various nonlinear physical problems. The 

through study of literature reveals that Exp-function 

method has been applied on a wide range of 

differential equations and is highly reliable. The exp-

function method has been extremely useful for 

diversified nonlinear problems of physical nature and 

has the potential to cope with the versatility of the 

complex nonlinearities of the problems. The 

subsequent works have shown the complete 

reliability and efficiency of this algorithm. He et. al. 

[10-11] used this scheme to find periodic solutions of 

evolution equations; Mohyud-Din [12-15] extended 

the same for nonlinear physical problems including 

higher-order BVPs; Oziz [16] tried this novel 

approach for Fisher’s equation; Wu et. al. [17, 18] for 

the extension of solitary, periodic and compacton-like 

solutions; Yusufoglu [19] for MBBN equations, 

Zhang [20] for high-dimensional nonlinear 

evolutions; Zhu [21, 22] for the Hybrid-Lattice 

system and discrete m KdV lattice;   Kudryashov [23] 

for exact soliton solutions of the generalized 

evolution equation of wave dynamics; Momani [24] 

for an explicit and numerical solutions of the 

fractional KdV equation; The basic motivation of this 

paper is the development of an efficient combination 

comprising an efficient transformation, exp-function 

method using Jumarie’s derivative approach [25-28] 

and its subsequent application to construct 

generalized solitary wave solutions of the nonlinear  

Korteweg de-Vries (KdVs)   Equations of fractional-

order [29-30]. 
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It is to be highlighted that Ebaid [31] proved that  

dc  and qp  are the only relations that can be 

obtained by applying exp-function method to any 

nonlinear ordinary differential equation.  

Theorm.1.1 [31] suppose that 
)(ru  and 

u  are 

respectively the highest order linear term and the 

highest order nonlinear term of a nonlinear ODE, 

where r   and 


 are both positive integers. Then the 

balancing procedure using the Exp-function ansatz; 
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Theorm.1.2 [31] suppose that 
)(ru  and 

ks uu )(
 are 

respectively the highest order linear term and the 

highest order nonlinear term of a nonlinear ODE, 

where 
sr,

 and  are all positive integers. Then the 

balancing procedure using the Exp-function ansatz 

leads to dc  and
qp

,
.1,,  ksr
. 

 Theorm 1.3[31] Suppose that  
)(ru  and

)( )(su
 are 

respectively the highest order linear term and the 

highest order nonlinear term of a nonlinear ODE, 

where 
sr,

and  are all positive integers. Then the 

balancing procedure using the Exp-function ansatz 

leads to  dc  and
qp

,
2,1,  sr

. 

Theorm 1.4[31] Suppose that u
)(r
 and (u

us ))(
 

are respectively the highest order linear term and the 

highest order nonlinear term of a nonlinear ODE, 

where 
,,sr

 and   are all positive integers. Then 

the balancing procedure using the Exp-function 

ansatz leads to  dc  and
qp

, 

∀
1,,, sr

. 

2. Jumarie’s Fractional Derivative  
 Jumarie's fractional derivative is a mo1dified 

Riemann-Liouville derivative defined as  
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Where  denotes a continuous (but 

not necessarily differentiable) function. 

Some useful formulas and results of Jumarie’s 

modified Riemann–Liouville derivative were 

summarized in Refs. [25-28].  

 ,0,0  cDx c=constant       (2) 

 
    ,0  xfcDxcfD xx c=consta

nt                            (3) 
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      ..' txxftxfD xx

 
          (6) 

3. Exp-function Method [32-36] 

We consider the general nonlinear FPDE of the type  

,10,0.)..,,,,...,,,,(   uDuDuDuuuuuP xxxtxxxxxxt

                                              (7)  

where 
uDuDuD xxxt

 ,,
are the modified Riemann-

Liouville derivative of u with respect to 
xxxt ,,

 

respectively. 

Using a transformation [36]  

  ,
1 0
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
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t

kx
0,, k  are all 

constants with 0,, k                            (8) 

 we can rewrite equation (1) in the following 

nonlinear ODE;       

           ,0),,,,( '''''' ivuuuuuQ                  (9) 

where the prime denotes derivative with respect to 


.  

According to Exp-function method, we assume that 

the wave solution can be expressed in the following 

form  
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where 
, ,p q c

 and d   are positive integers which 

are known to be further determined , na
 and mb

 are 

unknown constants. We can rewrite Eq.(4) in the 

following equivalent form  
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This equivalent formulation plays an important and 

fundamental part for finding the analytic solution of 

problems. To determine the value of c  and
p

 by 

using [31],   

dqcp  ,
                    (12) 

4.  Numerical Applications 

In this section, we apply exp-function method to 

construct generalized solitary solutions for Korteweg 

de-Vries(KdVs) equations of fractional-order. 

Numerical results are very encouraging.  

Example 4.1 Consider the following KdVs Equation 

of fractional order   

                10  (13)  

Using (8) equation (13) can be converted to an 

ordinary differential equation  

                   (14) 

where the prime denotes the derivative with respect 

to 


. The solution of the equation (13) can be 

expressed in the form, equation (11). To determine 

the value of c  and
p

, by using [31],  

., dqcp 
        (15) 

Case 4.1.I. We can freely choose the values of c  and 

d , but we will illustrate that the final solution does 

not strongly depend upon the choice of values of 

cand d . For simplicity, we set 
1cp

and 

1dq
 equation (11) reduces to  
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Substituting equation (16) into equation (14), we 

have 
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where 
    4101 expexp   bbbA

, ic
 

are constants obtained by Maple 16. Equating the 

coefficients of 
 exp n

 to be zero, we obtain     
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Solution of (12) will yield  
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We, therefore, obtained the following generalized 

solitary solution 
 ,u x t

of equation (13)  
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4.1(a)  25.  

 

 
      

 

              4.1(b)  50.  
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4.1(c) 75.   

 

 

 
 

4.1(d) 1  

 

Figs 4.1(a), 4.1(b), 4.1(c), 4.1(d)  Soliton solutions of 

equation (13) for 1110   bba  and 

1k  
 

Case 4.1.II.  If 2cp  and 1dq  then trial 

solution, equation (13) reduces to 
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Proceeding as before, we obtain 
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Hence we get the generalized solitary wave solution 

of equation (13) for 1 as follow 
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In both cases, for different choices of c ,
p

, d  

and
q

, we get the same soliton solutions which 

clearly illustrate that final solution does not strongly 

depends upon these parameters. 

 

5. Conclusion In this paper, we applied exp-function 

method to construct generalized solitary solutions of 

the nonlinear fractional order Korteweg de-Vries 

(KdVs) equations. It is observed that the Exp-

function method is very convenient to apply and is 

very useful for finding solutions of a wide class of 

nonlinear problems. 
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