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Abstract Although the global wind energy industry has made considerable progress in recent years, the complex 
systems and harsh working conditions of wind turbines have led to frequent failures. Therefore, how to use the 
operating unit operation and maintenance data to conduct overall research on the status of wind turbines, wind farm 
evaluation, intelligent operation and maintenance technology promotion, and optimizing operation and maintenance 
strategies are important issues that need to be resolved for the sound development of wind turbines. This paper 
studies wind turbine life assessment and optimization technology, and understands the relevant knowledge and 
theory of wind turbines based on literature data, and then designs the life assessment of wind turbines based on big 
data, and uses examples for experimental verification. The effectiveness of the proposed predictive algorithm is 
derived from experimental results, taking into account the duration of catastrophic failures. If the bearing runs for 34 
days, the actual remaining life of the bearing is 0.2 days, the remaining life predicted by LRM is 0.8 days, and the 
remaining life provided by ILRM is 0.31 days. Therefore, compared with LRM, the prediction accuracy of ILRM is 
significantly improved. 
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1. Introduction 

Today, the development of human economy 
and society is subject to the dual constraints of resource 
and environmental protection issues, with the emphasis 
being reflected in the increasingly serious problems of 
resource scarcity and environmental pollution [1-2]. At 
present, countries all over the world are actively 
developing renewable energy projects to replace 
traditional energy sources such as fossil fuels and 
alleviate the resulting environmental pollution and 
resource scarcity problems [3-4]. Among them, wind 
power projects have the advantages of cleanliness, 
pollution-free, and increasingly mature production 
technology, and can be developed and implemented on 
a large scale. This solution is to use wind energy 
reasonably and efficiently, which is a good substitute 
for the current human energy shortage problem and 
fossil fuels [5-6]. Nowadays, all countries in the world 
regard wind energy TV as the main way to produce 
clean electric energy, especially in China, the 
sustainable development of wind power has a certain 
economic background and a certain social background 
[7-8]. 

Regarding the research on using wind energy 
to generate electricity, some researchers use the 
standard variable-pitch external total load analysis 
model to obtain the total load carried by the variable-
pitch bearing under different wind conditions. Then, 

based on the terahertz contact principle, the finite 
element method is used to establish Finite element 
analysis model. Finally, by using the standard finite 
element analysis model for error evaluation of fatigue 
life type, support strength, step synchronization and 
flatness, etc., the load distribution of the stepped 
bearing and the fatigue life of the stepped bearing can 
be obtained, the calculation formula and the fatigue of 
the installation surface Influencing value, it can also 
analyze in detail the influencing factors of the bearing 
duration [9]. In addition, R&D personnel also use GH 
blade fan characteristic analysis software to measure 
the load of the blade during operation, use dynamic 
analysis to calculate the voltage-time curve of the 
dangerous part of the blade root, use the rainfall 
counting method to synthesize the voltage spectrum, 
and use the glass fiber SN curve for calculation. Before 
calculating the life of wind turbine blades, the effect of 
load interaction on blade fatigue life was determined 
[10]. And some researchers calculated the precise fan 
blade load with flat strip theory, obtained the maximum 
blade voltage and equivalent voltage with the finite 
element method, discussed the SN curve law of blade 
material, and discovered the theoretical method based 
on blade fatigue life estimation. However, the article 
does not verify the load balance, nor does it indicate 
that the output voltage range is in the dangerous part of 
the blade, and it is difficult to guarantee the accuracy of 
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the life prediction [11]. Some researchers have 
proposed a method to determine the four coordinate 
system of a wind turbine, analyzed the load status of 
the wind turbine in this coordinate system, and further 
explored how to increase the load of the components of 
the wind turbine. However, this document only focuses 
on the static load of wind turbines, and cannot perform 
simulation calculations on wind turbine blades under 
complex conditions [12]. In summary, the research on 
wind turbines is mainly in two aspects, one is the study 
of the fatigue life of the bearing, and the other is the 
study of the fatigue life of the wind blade, but both of 
these are based on the analysis of the fatigue strength 
of the finite element. There is no fatigue strength 
prediction based on operating data. 

This paper conducts research on the life 
assessment and optimization of wind turbines based on 
big data, analyzes the basic composition of wind 
turbines and monitoring data of wind turbines on the 
basis of literature data, and then conducts the life 
assessment of wind turbines based on big data, and 
design and verify the design with examples. 
 
2. Wind Turbines 
2.1 Wind turbine structure 

The most widely used type of wind turbine on 
the market is a large (usually megawatt) horizontal 
shaft connected to a wind turbine network. Its basic 
structure is mainly composed of the following eight 
parts [13]. 

(1) Windmill: It is composed of three parts: 
blade, hub and step system. Wind turbines are also 
important components of wind turbines because they 
are the direct components that convert wind energy into 
mechanical energy. 

(2) Gearbox system: It is composed of three 
parts: main shaft, transmission gearbox, coupling, and 
mechanical braking system. The transmission device 
can transmit the rotor mechanical kinetic energy 
generated by the wind generator to the generator rotor, 
so that the wind generator rotates at the speed of the 
generator rotor. 

(3) Generator: The electrical energy required 
by equipment that converts mechanical energy into 
electricity. 

(4) Main engine and fuselage: The main 
engine is used to support the coupled transmission and 
generator, and at the same time transmit all the loads 
generated by the wind turbine and transmission system 
to the tower. The body cover is used to protect the 
components. 

(5) Deflection control system equipment: 
When the deflection control system equipment is used 
to adjust the direction of the wind turbine against the 
wind, it is mainly composed of functional elements and 

mechanisms such as deflection bearings, drive motors, 
transmission mechanisms, and air brakes. 

(6) Control and safety system: including step 
controller (divided into electric step and hydraulic 
step), converter, main controller, control unit safety 
chain, and various sensors. The management and safety 
control system mainly completes the management tasks 
from generator set signal monitoring, generator set 
starting to networking work and power generation to 
ensure the safe and reliable operation of the generator 
set. 

(7) Tower and key components: The tower is 
the supporting component of the wind turbine, which 
mainly supports the weight of the entire engine and 
various dynamic loads generated during operation, and 
transmits these loads to the key components. 

(8) Other parts: mainly including lightning 
protection system, etc. 

2.2 Condition monitoring methods of wind 
turbines 

As can be seen from the previous section, a 
wind turbine is a complex system composed of 
multiple components, and the failure of each 
component will affect the normal operation of other 
components, and even cause the entire unit to shut 
down. Therefore, monitoring the status of the key 
components of the wind turbine to detect early failures 
is of great significance to ensure the safe and reliable 
operation of the wind turbine. This paper briefly 
introduces the technology used to monitor the failure 
types and conditions of key components of wind 
turbines [14]. 

(1) Blade: The blade is exposed to harsh 
environments for a long time and bears complex 
alternating loads, and is prone to corrosion, cracking, 
deformation and other failures. The current condition 
monitoring technology is mainly based on the voltage 
and stress changes of the blade material under various 
forces to determine the blade fault status. Common 
state monitoring methods mainly include vibration 
measurement methods, transfer function and dynamic 
strain analysis methods, response comparison methods, 
and wave propagation analysis methods. At the same 
time, it can use the latest non-destructive testing 
methods to check the operating conditions, such as 
acoustic emission testing methods, infrared image 
testing methods, etc. 

(2) Gear box: Under various working 
conditions and different load conditions, gear box 
failures are mainly divided into cone box failure and 
bearing type failure. Gear failures include tooth surface 
fatigue, adhesion and tooth fracture. The bearing type 
failures include fracture, shedding, perforation and 
damage. Vibration method is the most mature and 
commonly used error checking method in today's 
science and technology. By time-frequency analysis of 
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the incoming vibration information, the characteristic 
fault frequency can be regarded as the key index for 
predicting rolling bearing and gear errors, and more 
accurate fault inspection can be carried out, which 
greatly improves the accuracy of fault diagnosis. Time-
frequency field analysis combines the dual information 
of time domain and frequency interval, and is suitable 
for processing unsteady vibration information. The 
most common analysis methods include EMD, particle 
analysis, and short-time Fourier transform. In addition, 
the temperature measurement method is a state 
recognition monitoring method based on the 
temperature changes of fan components. Because of its 
convenient measurement and operation, it is widely 
used in the state monitoring of gearboxes, generators 
and other components. 

(3) Generator: Under high AC working 
conditions and a more complex electrical environment, 
the generator is prone to faults such as generator 
overheating, excessive vibration, short circuit, 
insulation rupture, etc, and monitoring can be taken 
according to pressure, current, and voltage. In addition, 
the linear and non-linear generator model generation 
technology can check the rotor eccentricity and other 
faults of the engine based on the characteristic fault 
analysis. 

(4) Pitch system: The pitch system can use 
vibration monitoring to collect voltage and current 
signals to monitor the state of the pitch system. 

(5) Electrical system: Common electrical 
system faults include short-circuit faults, over-current 
faults, and over-voltage faults. The status of each 
component of the electrical system can be monitored 
by voltage, current, temperature, etc. 

(6) Bypass system: The main types of errors in 
the deflection system are gear wear, engine failure and 
improper installation. The available condition 
monitoring methods are approximate vibration 
monitoring, current monitoring and voltage monitoring. 
 
3. Life Assessment and Optimization of Wind 
Turbine Generator Sets Based on Big Data 
3.1 Monitoring signal analysis 

During the operation of wind turbines, various 
types of signals are monitored, including many signals 
related to bearings [15]. The data in this article is based 
on the operation data of dual-power wind turbines 
monitored by wind farms in this city for one year. 
Table 1 shows the monitoring targets and sensor 
information. Table 2 shows the collected signals related 
to wind turbine bearings. 

 
Table 1. Monitoring target and sensor information 
Type Information 

Motor model Double-fed asynchronous generator (FYKS03) 

Bearing Type Deep groove ball bearing (SKF6322) 

sensor type Ordinary vibration acceleration sensor 

Sampling frequency 2560Hz 

Table 2. Signals related to wind turbine bearings 
Category Signal 
Wind turbine bearing conditions 
Generator bearing status 

Generator speed 
Generator output power 

category Generator bearing temperature 
Bearing vibration acceleration 

 
 

In Table 2, the monitoring speed of the 
generator, the output power of the generator and the 
temperature of the generator bearing are the signals that 
reflect the operating status of the wind turbine bearing. 
The bearing acceleration signal of the bearing is the 
characteristic signal received by monitoring, which can 
reflect the deterioration of the bearing. It is greatly 
affected by operating conditions. Therefore, in order to 
receive vibration signals under the same operating 
conditions, it is necessary to divide the operating 
conditions of the wind turbine bearing. Vibration 
acceleration signals under the same working conditions 
are affected by internal and external interference. A 

large number of interference signals will be generated 
in the vibration acceleration signals to be monitored. 
Therefore, noise removal is required for the vibration 
signals to be monitored. Under the same operating 
conditions, it must have characteristics ground output 
the vibration signal after the noise is turned off to 
obtain the characteristic quantity that may reflect the 
change trend of the bearing life of the wind turbine. 
 
3.2 Particle packet decomposition 

This task briefly introduces the theory of 
ripple packet and demonstrates the process of ripple. 
Through the analysis of the characteristic frequency of 
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the bearing defect, the corrugated package is used to 
realize the attenuation of the vibration signal to be 
monitored. 

Turning off the vibration signal is to filter the 
noise from the observation signal infected by the noise. 
The noise may be caused by the malfunction of the 
signal detector and the monitor itself, or it may be 
caused by other interference. Noise is characterized by 
randomness, such as white noise and colored noise. 
Noise reduction is to minimize noise interference. 

Under the influence of various factors, the 
large number of vibration signals that can be received 
by the running wind turbine bearing monitoring must 
contain certain noise. The existence of these noises 
inevitably reduces the reliability of the research results. 
In order to improve the reliability of the survey results, 
it is necessary to deactivate the vibration signal before 
extracting the characteristics of the vibration signal. 
 
(1) Particle packet decomposition theory 

The method of bulk packet noise reduction is 
to maintain a high time-frequency resolution while 
improving the signal-to-noise ratio. At the same time, 
according to the characteristics of the analyzed signal, 

the corresponding frequency band is adapted to match 
the signal spectrum. Assuming that the particle 
function y(t) and the scaling function φ(t) are given, let 

u(t)=φ(t), 
)(1 tu

=y(t). 





Zk

nn ktukhtu )2()(2)(2
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

 
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nn ktukhtu )2()(2)(12
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In the above equation, h (k) and g (k) are 

quadrature filters. One of the characteristics of wavelet 
packets is that they can completely decompose high 
and low frequency signals. 

The particle packet decomposition method (as 
shown in Figure 1) divides each subband into two, and 
the one used for classification covers all frequency 
bands. In this way, the loss of effective signal 
information is reduced. Moreover, the wavelet packet 
can also automatically select the frequency band 
required by its information during the analysis process, 
which greatly improves the time-frequency analysis. 

 
 

 
 
Figure 1. Particle packet decomposition 
 
 

Particle packet decomposition applies g(k) and h(k) to the detail and approximation signals at the 
same time, and further decomposes to gradually improve the detail and approximation signals. 
Figure 2 shows the basic steps of using particle packet decomposition. 
 

 
 

Figure 2. The basic steps of particle packet decomposition 
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3.3 Feature extraction 

After the signal is decomposed, the 
decomposition result contains more error information, 
and then the features are extracted to obtain the input 
data of the classification model. 
(1) Sensitive IMF selection 

A sensitive IMF is an IMF that contains a 
large amount of error information, and its sensitivity is 
determined based on its curvature and related indexes. 
Kurtosis is a dimensionless function in the time 
domain. Its value is only related to the impact of the 
bearing failure when the signal is collected, and has 
nothing to do with the size of the bearing, the type of 
bearing tested and the load carried by the bearing, and 
it is more suitable for surface damage. 
 
(2) Time-frequency domain output characteristics 

The time-domain characteristics of a signal 
can be roughly divided into two-dimensional 
characteristic parameters and non-dimensional 
characteristic parameters according to various physical 
characteristics. General dimensional parameters such as 
peak value and average value will vary with operating 
conditions such as load and speed, but the 
dimensionless characteristic parameters are relatively 
constant. Frequency domain characteristics include 
average frequency, center frequency, root mean square 
frequency and standard signal frequency deviation. The 
time-domain and frequency-domain attribute 
configuration for generating attribute vectors can take 
into account the stability and accuracy of error 
diagnosis. If the time sequence of the signal is 
(x(1),...x(N)), the Fourier change of the signal gets the 
frequency sequence (x[(1)],...x[(N)]), and the output 
signal time domain is 7 characteristics in the frequency 
domain. 
 
3.4 Life prediction algorithm 

In this paper, PCA and ILRM's four-point 
spherical bearing residual life prediction method is 
adopted. By selecting simulation partners and revising 
the model itself, the accuracy of predicting the residual 
life of the model is greatly enhanced. The specific 
process is as follows. 

(1) Selection of functional parameters: Extract 
the time domain, frequency domain, and time-
frequency domain attributes of the entire life cycle 
from the bearing vibration data, filter the effective 
attribute parameters, and form a vector attribute set. 

(2) Construct a set of relatively large 
dimensions. Select the characteristic quantity of a 
bearing in a normal period and take the average value, 
and divide the total life data of the characteristic by the 
average value to obtain the relevant characteristic. 
Obtain the relative characteristics of each active 
characteristic parameter used to construct the mixed 
sector. 

(3) Principal component analysis: Principal 
component analysis is to analyze a group of relatively 
large characteristics of the mixture, and select the 
principal components with a cumulative contribution 
rate of more than 95%. 

(4) Model structure: Calculate model 
parameters based on the selected effective key 
elements and create ILRM. 

(5) Life prediction: Use the test group bearing 
data and refer to the program in the training group 
method to select model variables, and evaluate the 
safety of the roller bearing by calibrating the ILRM, so 
as to make an estimate of the remaining life. 
 
4. Simulation Experiment 
4.1 Life prediction 

According to the above-mentioned ILRM and 
LRM life prediction methods, the remaining life of the 
four-rolling bearing of the wind turbine is calculated, 
and the results are shown in Table 3: 

 
 
Table 3. Life expectancy of ILRM and LRM 
Bearing status Normal 

period 
Early 
failure 

Recovery 
period 

Mid-term 
failure 

Severe failure 
period 

Time (days) 30.4 32.5 33.2 33.9 34.1 
Remaining life 3.98 1.89 1.19 0.49 0.29 
LRM 8.36 3.52 2.92 1.23 0.85 
Prediction error 4.38 1.64 1.77 0.74 0.56 
ILRM 6.39 3.22 2.01 1.03 0.32 
Prediction error 2.41 1.34 0.83 0.19 0.04 
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Figure 3. Life expectancy of ILRM and LRM 

 
 
 

It can be obtained from the above Figure 3 
that the accuracy of the residual life of ILRM is much 
higher than that of LRM. Therefore, the duration of 
catastrophic failure must be considered. If the bearing 
industry operates on the 34th day, the actual remaining 
life of the bearing type is 0.2 days, while the actual 
remaining life predicted by LRM is 0.8 days, and the 
actual remaining life provided by ILRM is 0.31 days. 
Therefore, compared with LRM, the forecast accuracy 
of ILRM has been significantly improved. 
 
4.2 Optimal design of structural parameters 

In practice, bearings need to have a longer 
service life, higher load-carrying capacity and lower 
rotational torque. In order to meet this requirement, the 
objective function of the optimized design model is to 
select the dynamic load rating, static load rating and 
friction moment of the bearing, namely: 

 
 

).,(min)( MCCFXF o
DX


 (3) 

 
In the expression, D is the possible area of the 

objective function. 
In this paper, the linear weighting method is 

used to determine the objective function of the multi-
objective optimization problem. Bearing static load 
rating and dynamic bearing rating are the biggest 
issues, and bearing friction torque is the smallest issue. 
The objective function is: 

 
MXF o 321 CC)(    (4) 

 

In the formula: 1 , 2 , 3 --weight, which 
depends on the impact of the objective function on the 
bearing performance. 
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4.3 Comparison of mechanical properties of 
bearings after optimization 

View the simplified finite element model of 
the 4-point ball bearing with bolted connection with the 
optimized structural parameters, and perform the 

ultimate load experimental analysis on it. Table 4 
shows the experimental results of applying ultimate 
load to the 4-point contact bearing. 
 

 
 
 
 

Table 4. 4 Experimental results of ultimate load of point contact bearing 
 After optimizing the structure Before optimizing the structure 
Maximum load of raceway 1 83803.3 59514.8 
Maximum load of raceway 2 86573.6 61482.2 
 
 
 

 
Figure 4. 4 Experimental results of ultimate load of point contact bearing 
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It can be seen from Figure 4 that the 
optimized structure has a maximum load of 83803.3N 
for the No. 1 raceway and a maximum load of 
5,9514.8N for the No. 2 raceway. After optimization, 
the maximum load of the No. 1 raceway is 85673.6N, 
and the maximum load of the No. 2 raceway is 
61482.2N. After structural optimization, the maximum 
contact load on Highway 1 and Highway 2 was 
reduced. No. 1 raceway is reduced by 2772.4N, the 
maximum load of No. 2 raceway is reduced by 
1967.5N, and the maximum load is reduced by 3.20%. 

 
5. Conclusions 

This paper studies wind turbine life 
assessment and optimization technology, analyzes the 
relevant theoretical knowledge of wind turbines on the 
basis of literature data, and then designs the life 
prediction of wind turbines based on big data, and 
carries out an example of the model. The calculation 
results show that the remaining life accuracy of ILRM 
is much higher than that of LRM, and then the bearing 
structure parameters are optimized. After the 
optimized structure, the maximum contact load of 
raceway 1 and raceway 2 is reduced. 
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