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Abstract: This paper offers a short survey of linear systems Proportional-Integral-Observer design. This observer 
has the capacity to estimate simultaneously the states and unknown inputs which include disturbances or model 
uncertainties appearing on the system. The design of state and output estimation using PO and state, output and 
disturbance estimation using PIO is done using Matlab/Simulink successfully. The simulation is done for estimating 
using PO and PIO and the results proved that estimates the state variables and output correctly when there is no 
disturbance in the plant and there is a constant steady-state error in estimation after leading a constant disturbance 
into the plant for both state variables and plant output for the Proportional Observer and there is ability to estimate 
state variables, disturbance and system output correctly with or without the disturbance in plant for the Proportional 
Integral Observer. 
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1. Introduction 

Observers play a vital rules on control system 
because some control techniques require the accurate 
estimation of system to realize the close loop control 
obligations. Measuring all states is not usually feasible 
due to the fact a few states aren't measurable or the 
usage of sensors may additionally too high priced. 
Meanwhile excessive quality performance may be 
accomplished thru the estimation of unknown inputs 
affecting the system inclusive of disturbances or 
model uncertainties. Beside the estimation of states 
and unknown inputs, observers are also able to growth 
the control performance. In this contribution a quick 
survey and evaluation of PI-Observer design and its 
formulation for a linear system is presented. 
2. State and Disturbance Estimation  

The state-space model of an nth order, p input 
and q output plant with l independent disturbance of 
constant value is described as: 
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The plant state vector x is n × 1, the plant input 

vector u is p × 1, and the independent disturbance d is 
an l × 1 vector. In case of the disturbance model is 
unknown, the matrix E can be assumed to be identity 

matrix with the same order of plant. The output y, a q 
× 1 vector, of the plant is: 

 2y Cx
 

 
Figure 1. Block diagram of proportional observer 
 
Proportional observers are built to estimate state 

variables using the plant input and output, as is shown 
in Figure 1. The state-space model of proportional 
observer in shown as follows: 

   ˙垐 ? 3x Ax Bu L y Cx   
 

In which xˆ is the estimated of state variables. 
Subtract equation (3) from (1), letting e = x − xˆ, 
which is the error between actual and estimated 
variables and disturbances, so that: 
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Therefore, if there is no disturbance in plant (d = 
0), a proportional observer has the ability to estimate 
the state variables, if (A−LC) is Routh-Hurwitz stable 
which means all eigenvalues of (A−LC) have negative 
real parts. However, if d is a non-zero constant, there 
will be a constant steady-state error between the 
estimated and actual state variables. 

In order to eliminate this error in estimation, 
disturbance observer (DO) is described as follows: 
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According to the definition [5], the state space 
mode of proportional integral observer is: 
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Comparing equation (5) and equation (6), it is 
obvious that disturbance observer can be regarded as 
proportional integral observer in a special case. The 
block diagram of proportional integral observer is 
shown in Figure 2. 

 
Figure 2. Block diagram of proportional integral 
observer 

 
Recall the state space model of the plant with 

disturbance described by equation (1). These two 
equations can be combined together by 

defining
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The output of the plant is given by the following 
equation: 
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Similarly, the state space model of disturbance 

observer described by equation (5) can also be 
rewritten into the following equation by 

defining
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By forming 
, 
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Equation (9) is equivalent to: 
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In this paper, the state space model of plant with 

disturbance (AZ,BZ,CZ) described by equation (7) will 
be called the extended plant model, and the state space 
model of DO described by equation (10) will be called 
the extended observer. 

Subtract equation (7) by equation (10), letting e 
= z − zˆ, which is the error between actual and 
estimated variables and disturbances, so that: 

Noticing that y = Czz in equation (8), the 
equation above can be rewritten as:  
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Routh-Hurwitz stable, the error between actual 

and estimated variables will become zero as t →∞ 
Recall equation (8) and (10): 
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Comparing the equations above with the state-
space model of proportional observer described by 
equation (2) and (3): 
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It is obvious that the extended PIO model has the 

same formation with PO, by changing (A, B, C, L) into 
(AZ, BZ, CZ, LZ). Therefore, disturbance observer and 
proportional integral observer both can be regarded as 
a higher order proportional observer for the extended 

model, with

ˆ
ˆ

ˆ

x
z

d

 
  
  . Thus, design methods for 

proportional observers can be applied to observer gain 
L calculation for proportional integral observers with 
this extended observer model. 
3. Illustrative Examples 
3.1 State and Output Estimation with PO 

A 3rd order single-input, single-output (SISO) 
system, the state space model is given by: 
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The Simulink model for the Estimated and actual 
state variables and Estimated and actual system output 
using PO is shown in Figure 3 below. 

 

 
Figure 3 Simulink model for the Estimated and actual 
state variables and Estimated and actual system output 
using PO 

 
The estimated and actual state variables and 

estimated and actual system output using PO 
simulation result is shown in Figure 4 and Figure 5 
respectively. 

 
Figure 4 Estimated and actual state variables 

 
Figure 5 Estimated and actual system output 
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The simulation result given by Figure 4 and 5 
shows that proportional observer estimates the state 
variables and output correctly when there is no 
disturbance in the plant for t < 2 sec. However, there 
will be a constant steady-state error in estimation after 
leading a constant disturbance into the plant at t = 2 
sec, for both state variables and plant output. 
3.2 State, Output and Disturbance Estimation 
with PIO 

A 3rd order single-input, single-output (SISO) 
system, the state space model is given by: 

 

4 4 6 10

25 10 15 , 21

16 18 8 0.98

4

1 0 1 , 1.43

4.34

A B

C E

   
   

     
       

 
 

    
 
   
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disturbance d = 10 is added to the plant at t = 2 sec. 
The PIO state space representation is 
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The Simulink model for the estimated and actual 
state variables and estimated and actual system output 
using PIO is shown in Figure 6 below. 

 

 
Figure 6 Simulink model for the Estimated and actual 
state variables and Estimated and actual system output 
using PIO 

 
The estimated and actual state variables, 

estimated and actual system output and estimated 

disturbance using PIO simulation result is shown in 
Figure 7, Figure 8 and Figure 9 respectively. 

 

 
Figure 7 Estimated and actual state variables 
 

 
Figure 8 Estimated and actual system output 
 

 
Figure 9 Estimated disturbance 

 
As is shown in Figure 7, 8 and 9, simulation 

result shows that PIO has the ability to estimate state 
variables, disturbance and system output correctly 
within 0.6 sec, with or without the disturbance in 
plant. 



 Report and Opinion 2020;12(11)           http://www.sciencepub.net/report   ROJ 

 

5 

 
4. Conclusion 

Observers are systems that estimate the values of 
unmeasured state variables from input-output 
measurements. The envisioned state variables 
produced by means of proportional observers 
converge to the values of the actual ones if there are 
no disturbances appearing on the plant. In the 
presence of disturbances, a proportional integral 
observer is wanted to gain correct estimations. For the 
proportional observer, the simulation result shows that 
estimates the state variables and output correctly when 
there is no disturbance in the plant and there is a 
constant steady-state error in estimation after leading 
a constant disturbance into the plant for both state 
variables and plant output. For the proportional 
integral observer, the simulation result shows that the 
ability to estimate state variables, disturbance and 
system output correctly with or without the 
disturbance in plant. 
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