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Abstract: The Laplace transformation is a mathematical tool which is used in the solving of differential equations 
by converting it from one form into another form. The Laplace Transform has also its inverse. During the process of 
solving physical problems it is necessary to epiclesis the inverse transform of the Laplace transform. The Laplace 
transformation is used in solving the time domain function by converting it into frequency domain function. In this 
paper we will discuss the Analytically Interpretation of inverse Laplace Transformation.  
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Introduction: 

The Laplace transformation is applied in 
different areas of science, engineering and technology. 
The Laplace transformation is applicable in so many 
fields [1, 2, 3, 4, 5, 6 ]. The Laplace Transform has 
also its inverse. During the process of solving physical 
problems it is necessary to epiclesis the inverse 
transform of the Laplace transform [3, 4, 5, 6, 7, 8, 9, 
10, 11, 12 ]. The Laplace Transform was primary used 
and named after by Pierre Simon Laplace Pierre 
Simon Laplace was a French Mathematician an 
Astronomer, who had a lot of control in the growth of 
several theories in mathematics, statistics, physics, and 
astronomy [13, 14, 15, 16, 17]. He contributed 
seriously to physical mechanics, by converting the 
previous geometrical analysis to one based on 
calculus, which opened up application of his formulas 
to a wider range of problems. It is effective in solving 
linear differential equation either ordinary or partial 
[18, 19, 20, 21, 22 ].  
Basic Definition: 

Let F (t) is a well defined function of t for all t ≥ 

0. Then the Inverse Laplace transformation of , 

denoted by F (t) or  { }, is defined as 

 { } =  
Provided that the integral exists, i.e. convergent. 

Where the parameter which may be real or complex 

number and  is the Inverse Laplace transformation 
operator. 

 
Methodology:  
Some Properties of inverse Laplace Transform 

(1)  
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Which of course exists if  are 
piecewise continuous. the relation is called the 

convolution or falting of .  
 

Using Convolution Theorem, Find the Inverse 
Laplace Transform of the Function 

 

 

  

 

 

 

 

 

 

 
 

 
 

 
(B) Inverse Laplace Transform by using 
Heaviside’s Expansion Theorem: 

Where  &  do 
not keep common factor and the degree of Numerator 

is less than the degree of denominator. If  has 

different roots, than we find by this theorem, inverse 
Laplace Transformations. 

 
Heaviside’s Expansion Formula: 

If  &  be polynomials in  where the 
degree of Numerator is less than the degree of 

denominator. If  has n different roots 

 

 
Using Heaviside’s Expansion Formula, Find the 
Inverse Laplace Transform of the Function 

 

 
Let, 

 

 

 
To find roots of  

 
Then roots are,  

 
Now,  

 

Then,  

 
And, 

Since,  

 
Now, By Heaviside’s Expansion formula. 

 
Or,  
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Hence,  

 
 

(C) Inverse Laplace Transform by using Inversion 
Formula: 
Complex Inversion Formula 

If  is continuous function and is of 
exponential order and if the Laplace transform 

of , then the inverse 

Laplace transform of  i.e.  is given 
by 

,  
This result is known as complex inversion 

formula. 
Using Complex Inversion Formula, Find the 
Inverse Laplace Transform of the Function 

 
Solution: 
 
We have, 

 

 
 

 
 

Now, 

 

 
 

 

 

 

 
Hence, 

 

 
Hence, 

 
(D) Inverse Laplace Transform by using Partial 
Fraction: 
 
Using Partial Fraction Method, Find the Inverse 
Laplace Transform of the Function 

 
Solution: 
 

 

 

 

 

 

 
By solving this, 

 

, 

 
Or, 
 

 
Or, 
 

 
Taking inverse Laplace Transform on both sides, 

 

 

 
Hence, 
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(E) Inverse Laplace Transform by using 
Multiplication by t-Property: 
 

 

  

  

  

 
 

Using Partial Fraction Method, Find the Inverse 
Laplace Transform of the Function 

 
Solution: 

 

 

, 

 
Or, 

 
Or, 

 

 
Or, 

 
Or, 

 
Or, 

 
Or, 

 
Or, 

 
Hence, 

 
 
(f) Inverse Laplace Transform by using Change of 
scale property: 

  

 

 
Using Change of scale property,  

If  

 

 

 
Solution: 
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Given, 

 
Written as for p  

 

 

 

 

 

 

 

 

 
(g) Inverse Laplace Transform by using Second 
shifting property: 
Second shifting property: 

  

 
Or, 

 
Using Second shifting property, Find the Inverse 
Laplace Transform of the Function 

 
Solution: 

 
Then, 

 
By Second shifting property 

 
 

 

 

 

 
 

 
Hence, 
 

 
 

(h) Inverse Laplace Transform by using First 
shifting property: 

  

 

 
 

Using First shifting property, Find the Inverse 
Laplace Transform of the Function 

 
Solution: 

 

 

 

 
Comparing and solving, 

 
Therefore, 

 
Or, 

 
Or, 

 
Or, 

 
Or, 
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Hence, 

 
 

Conclusion: 
The main purpose of this paper is the 

Analytically Interpretation of inverse Laplace 
Transform. The primary use of Laplace transformation 
is converting a time domain functions into frequency 
domain function. Laplace transformation is a very 
useful mathematical tool to make simpler complex 
problems in the area of stability and control. 
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