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Abstract: The theorems in this section extend the work of Haben et al. [41] on the condition number of the standard 
3DVAR and 4DVAR systems. We briefly discussed and compared J (p) to the conventional sc4DVAR approach (2.8) 
in Section 5.1.2 using the lower and upper bounds derived in [41] and the bounds we have derived in Theorem 5.1.2. In 
sc4DVAR, S is the only error variance ratio, which means if the observations are accurate and/or the background error 
variance is large then the condition number of the of Hessian of the sc4DVAR problem would rise. The assumptions 
become more specific with each theorem. The first theorem assumes general correlation structures for the background, 
observation and model errors while assuming there are fewer observations than the dimension of state space. The 
second theorem derives bounds that are more specific to a particular class of covariance and model matrices, whereas 
the final theorem is specific to the advection equation. We then take the preconditioned Hessian of objective function 
J (p) and bound its condition number. We then show the improvement in overall conditioning and minimisation 
iteration rates of the preconditioned problem compared to the original problem. 
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Introduction 

Numerical weather prediction (NWP) centres 
produce forecasts of future weather states using a 
numerical model of the atmosphere to evolve an 
estimate of the initial state of the atmosphere forward 
in time. The accuracy of this estimate, called the 
analysis, is therefore a major factor in determining the 
accuracy of the resultant forecast. Variational data 
assimilation (Var) is one method popularly used in 
NWP centres for finding the analysis. In Var the 
analysis is the minimiser of a cost function. The cost 
function is essentially a weighted measure of the 
distance between the forecast states and the available 
observations within a fixed time window, weighted 
using the background (or forecast) and observation 
error covariance matrices. The resulting solution is the 
maximum likelihood best estimate of the state of the 
atmosphere under certain assumptions. 

In the previous chapter we examined the e_ect 
that various assimilation parameters had on the 
iterative solution process of the wc4DVAR problem 
when applied to the 1D advection equation. 

The results in this chapter extend the results in 
[41], where the author bounded the condition number 
of the 3DVAR Hessian and then the Hessian of the 
strong-constraint 4DVAR objective function, denoted 
as S. We have derived a general result linking the 
condition numbers of the sc4DVAR Hessian S and the 
wc4DVAR Hessian Sp such that, 

K (S) < K (Sp),   (5.1) 
with no assumptions. This result shows that the 

condition number of the Hessian of sc4DVAR can 
never exceed the condition number of the Hessian of 
the wc4DVAR J ( p) formulation for identical 
assimilation problems.  
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\ HTR-1H„M„,0 HT R--1H„M„>1 ... HTR-1H„M„,„_1 H^R-1Hn )   (5.2) 
 
and its preconditioned counter-part 
Sp = I + D1/2L-T HT R-1HL-1D12. (5.3) 
The Eigen value spectrum of these matrices are 

not explicitly known and in practice they are too 
computationally expensive to calculate explicitly. So 
we take the route of estimating the condition number of 
the Hessian by bounding it in order to obtain 
information from the expressions yielded by the 
bounds. We utilize the bounds to gain insight into the 
Hessian condition number sensitivities of the objective 
function J (p) and its preconditioned counter-part. 

We first derive bounds on the condition number 
of the Hessian Sp with some simple assumptions on the 
observations. The assumptions become more specific 
with each theorem. The first theorem assumes general 
correlation structures for the background, observation 
and model errors while assuming there are fewer 

observations than the dimension of state space. The 
second theorem derives bounds that are more specific 
to a particular class of covariance and model matrices, 
whereas the final theorem is specific to the advection 
equation. We then take the preconditioned Hessian of 
objective function J (p) and bound its condition 
number. We then show the improvement in overall 
conditioning and minimisation iteration rates of the 
preconditioned problem compared to the original 
problem. 

The insight gained from the bounds are 
demonstrated through numerical experiments on the 
condition number. We also further demonstrate the 
condition number sensitivities obtained from the 
bounds by examining their effect on the convergence 
rate of the model error estimation an preconditioned 
model error estimation minimisation problems. 
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where the first term in the geometric series (5.17) 

comes from the main diagonal of (5.13). The second 
term of (5.17) is from the upper off-diagonal block 
entries of (5.13) and the third term is from the lower 
off-diagonal block entries. This pattern continues until 
the final term in the bottom right hand corner of (5.13), 
which coincides with the final term in (5.17). 

We now compute each of the terms in the series 
above. We have 

vH HT Hvk = N   (5.18) 
since circulant matrices have orthogonal 

eigenvectors and HTH is a square matrix with q unit 
entries on the main diagonal at positions of observation 
and 0 elsewhere. We also know the following to be 
true: 

(X«) (X«) = |X«|q.   (5.19) 
Comparison to Strong-Constraint 4DVAR 

The bounds in Theorem 5.1.2 bear some 
similarities to the bounds derived on the condition 
number of the Hessians of the sc4DVAR and 3DVAR 
problems as shown in [41] (Theorem 6.1.2 and 
Theorem 7.1.2). The influence of the condition number 
of B0 on the condition number of the sc4DVAR 
Hessian is similar to the influence of the condition 
number of D on the condition number of SP. The B0 

matrix was influenced only by the condition number of 
the background error covariance matrix CB, whereas D 

is influenced by CB, CQ and the ratio of ob/oq. We 
further illustrate this by taking a simplified scenario as 
an example. 
Numerical Results 

We now demonstrate the bounds through 
numerical experiments. We also highlight sensitivities 

of the condition number of S p with respect to 
assimilation parameters, which have been revealed by 
the theorems in Section 5.1. 

We let M be the linear advection model as in 
(3.71), with a one-dimensional domain of size N = 500 
grid points and spatial intervals of Ax = 0.1. We use 
temporal intervals of At = 0.1 and wave speed a = 
—0.3. We let n = 2, so we have a total of three model 
time levels including initial time, all of which are 
observed. We let q = 20 spatial observations at the grid 
points with equal spacing, so q (n + 1) = 60. The 
temporal observations are made every 3 model time 
steps, so at t0 = 0, t\ = 3At and t2 = 6At. We assume no 
spatial correlations for the observation errors whereas 
the background and model errors are spatially 
correlated (as in Sections 3.3.4.1 and 3.3.4.2), B0 = 
obCSOAR, Qi = Q = oq2CLAP, R = o2

QIq where ob = oq = 
oo =1 unless otherwise stated. We denote the 
correlation length-scale of a covariance matrix C as L 
(C). 
 
Conclusion: 

We have obtained new general bounds on the 
condition number of the wc4DVAR J (p) formulation. 
We then developed the bounds by making simple 
assumptions about the observations, the nature of the 
model and the covariance matrices. This was then 
extended to the specific case where the model is a 1D 
advection equation, which is of relevance in NWP 
since advection is a physical process occurring in 
numerous models describing atmospheric systems. 

The theorems in this section extend the work of 
Haben et al. [41] on the condition number of the 



 Report and Opinion 2020;12(3)           http://www.sciencepub.net/report   ROJ 

 

3 

standard 3DVAR and 4DVAR systems. We briefly 
discussed and compared J (p) to the conventional 
sc4DVAR approach (2.8) in Section 5.1.2 using the 
lower and upper bounds derived in [41] and the bounds 
we have derived in Theorem 5.1.2. In sc4DVAR, S is 
the only error variance ratio, which means if the 
observations are accurate and/or the background error 
variance is large then the condition number of the of 
Hessian of the sc4DVAR problem would rise. We 
showed that for wc4DVAR there is an intricate balance 
to be considered for the combination of the three ratios, 
—, — and —. We showed that the magnitude. 

' Sq ' So So ° 
(whether small or large) of the difference between 

the error variances in wc4DVAR directly effects the 
condition number of Sp. 

The bounds in Theorem 5.1.2 also indicated the 
sensitivity of K (SP) to correlation length-scales of the 
background and model error covariance matrices since 
these have a direct influence on K (D) and hence K (SP). 
We have also shown for the advection equation in 
Theorem 5.1.3, that the assimilation window length, n, 
influences the condition number of Sp. 
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