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Abstract: In this develops the development of an autonomous wall-following robot is presented. The wall following 
controller is a two input, two output system. The inputs are two proximity measurements to the wall, and the outputs 
are the speeds of the two rear wheels. A variety of evolutionary algorithms, operating according to Darwinian 
concepts, have been proposed to approximately solve problems of common engineering applications. Increasingly 
common applications involve automatic learning of nonlinear mappings that govern the behavior of control systems. 
In many cases where robot control is of primary concern, the systems used to demonstrate the effectiveness of 
evolutionary algorithms often do not represent practical robotic systems. In this paper, genetic programming (GP) is 
the evolutionary strategy of interest. It is applied to learn fuzzy control rules for a practical autonomous vehicle 
steering control problem, namely, path tracking. GP handles the simultaneous evolution of membership functions 
and rule bases for the fuzzy path tracker. 
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1. Introduction 

Mobile robots are mechanical devices capable of 
moving in an environment with a certain degree of 
autonomy. Autonomous navigation is associated to the 
availability of external sensors that capture 
information of the environment through visual images 
or distance or proximity measurements. The most 
common sensors are distance sensors (ultrasonic, laser, 
etc) capable of detecting obstacles and of measuring 
the distance to walls close to the robot path. When 
advanced autonomous robots navigate within indoor 
environments (industrial or civil buildings), they have 
to be endowed the ability to move through corridors, to 
follow walls, to turn corners and to enter open areas of 
the rooms [1,2]. 

Genetic programming [3] has recently been 
demonstrated to be a viable approach to learning fuzzy 
logic rules for mobile robot control and navigation [4, 
5]. Herein, we address the simultaneous design of 
fuzzy logic controllers (FLCs) using GP, i.e. evolution 
of both the input membership functions and the rule 
base. In addition, we extend the evolutionary influence 
of GP by incorporating the random selection of fuzzy 
logic connectives (t-norms) into the learning process. 
Finally, we examine the robustness of the evolved 
controllers by corrupting sensory data used by the path 
following robot, and by increasing the nominal 
forward velocity of the vehicle. This provides an 
indication of how well GP can evolve practical 
solutions that also retain the tolerance of imprecision 
and uncertainty characteristic of FLCs. 
 
 
 

2. Overviews of Fuzzy Control and GP 
The robot that is to be controlled was initially 

built to take part in an IEEE competition, held at 
Cleveland State University in 2004. The goal of this 
competition is to compete head to head on the playing 
board with an opponent and obtain the most points in 
an allotted amount of time. The dimensions of the 
robot had to be within those specified in the 
competition. The robot had to fit within a 1.5-foot 
square and could not exceed 1.5 feet in height. It 
should be totally autonomous, shouldn’t transmit or 
receive signals to or from the outside of the playing 
area, and shall not be equipped to intentionally harm 
its opponents. It also shouldn’t carry any onboard 
cameras. The main goal of this work, keeping in mind 
the requirements of the competition, was to cover as 
much of the playing area as possible within the 
shortest time so that the maximum points can be 
scored. The robot that was built placed second among 
eleven other competitors from different schools. 
 
3. Types of Robotic Behavior 

A mobile robot could be modeled in numerous 
ways, but the most important factor for defining the 
model would be the application and the complexity 
involved. The mobile robot designed in this work is a 
wheeled robot intended for indoor use as opposed to 
other types (legged, airborne, and submersible mobile 
robots). This robot type is the easiest to model, control, 
and build. There are various behaviors that could be 
modeled, like wall following, collision avoidance, 
corridor following, goal seeking, adaptive goal 
seeking, etc. With the competition in mind we had 
thought of implementing a wall following robot. This 
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robot would follow the boundaries of the playing area 
and cover a maximum area in a predefined path 
programmed into its onboard microcontroller. 

Various control techniques have been proposed 
and are being researched. The control strategies of 
mobile robots can be divided into open loop and closed 
loop feedback strategies. In open loop control, the 
inputs to the mobile robots (velocities or torques) are 
calculated beforehand, from the knowledge of the 
initial and end position and of the desired path between 
them in the case of path following. This strategy 
cannot compensate for disturbances and model errors. 

These functions assign a numerical degree of 
membership to a crisp (precise) number. More 
precisely, over a given universe of discourse (relevant 
numerical range) X, the membership function of a 
fuzzy set, denoted by (x) , maps elements x  X into 
a numerical value in the closed unit interval, i.e. (x): 
X  [0, 1]. 

Implementation of a fuzzy controller requires 
assigning membership functions for inputs and 
outputs. Inputs to a fuzzy controller are usually 
measured variables, associated with the state of the 
controlled plant, that are fuzzified (assigned 
membership values) before being processed by an 
inference engine. The heart of the controller inference 
engine is a set of if-then rules whose antecedents and 
consequences are made up of linguistic variables and 
associated fuzzy membership functions. Consequences 
from fired rules are numerically aggregated by fuzzy 
set union and then collapsed (defuzzified) to yield a 
single crisp output as the control signal for the plant. 
For detailed introductions to fuzzy control, fuzzy set 
operations, and concepts of fuzzification, inference, 
aggregation, and defuzzification see one of [2, 6]. 

In the GP paradigm, a population is comprised of 
computer programs or procedures (individuals) that are 
candidate solutions to a particular problem. These 
individuals participate in a simulated evolution process 
wherein the population evolves over time in response 
to selective pressure induced by the relative fitness of 
individuals in the problem domain. In our approach, 
each program executes condition-action statements, 
which collectively serve as a rule base to be embedded 
in a fuzzy controller. To preserve diversity among 
populations and vital genetic information among 
individuals, genetic operators are applied to create new 
individuals for succeeding generations. When the 
algorithm finally converges or satisfies its termination 
criteria, it is anticipated that the best (most fit) 
individual will be representative of an optimum or near 
optimum solution. 

In the next section, we introduce the autonomous 
vehicle control problem, followed by discussion of 
FLC design issues to be considered when employing 
GP. 

 
1. Literature review 

The position error is taken as the deviation of the 
center of gravity, C, or any other desired point of the 
robot from the nearest point on the path. The 
orientation error is the angular deviation of the robot 
from the tangent of the desired path. Hemami et al 
derived a state-space kinematic model for this robot 
where the state vector was comprised of the pose 
errors described. The reader is referred to either of [7] 
or [8] for details of the model derivation, which 
culminates in the following: 
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where Vu is forward linear velocity of the robot, 

and d  and   are rates of change of the effects of 
path curvature. In [8] it is concluded (based on 
dynamic analysis of the same vehicle) that for small 
steering angle,  (tan   ), Equation (1) 
approximates the slow dynamics of the vehicle when 
its forward velocity is low. For simulations presented 
later, we have simplified the robot kinematic model by 
taking this small steering angle approximation into 
account. Furthermore, we apply the controller to 
straight-line path following and, therefore, neglect the 
model effects of path curvature. Such a simplification 
does not preclude autonomous tracking of reasonably 
complicated paths since multi-segment paths can be 
defined to be piecewise linear. 
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Figure 1. Tracking control and error variables. 
 
For our application, we assume that the robot has 

dead-reckoning/odometry sensors that provide access 
to the error states at all times, or permit calculations 
thereof. This sensory input data is then mapped to 
control outputs according to the desired control policy. 
In path following simulations the state vector of the 
kinematic model is updated using the well-known 
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fourth-order Runge-Kutta numerical integration 
method. 

The path tracker to be learned by GP is a two-
input, single-output fuzzy controller that will map the 
error states into a proper steering angle at each time 
step. A population of candidate solutions is created 
from which a solution will emerge. The allowance for 
rule bases of various sizes enhances the diversity of the 
population. That is, the GP system creates individuals 
in the initial population that each have possibly 
different numbers of rules within a range (15-30) 
specified before a run. In the process of learning fuzzy 
control rules and membership functions, GP 
manipulates the linguistic variables directly associated 
with the controller. Given a desired motion behavior, 
the search space is contained in the set of all possible 
rule bases that can be composed recursively from a set 
of functions and a set of terminals. The function set 
consists of membership function definitions 
(describing controller inputs), components of the 
generic fuzzy if-then rule, and common fuzzy logic 
connectives. More specifically, these include functions 
for fuzzy sets, rule antecedents and consequents, fuzzy 
set intersection and union, and fuzzy inference. The 
terminal set is made up of the input and output 
linguistic variables and the corresponding membership 
functions associated with the problem. 

Each rule base in the current population is 
evaluated to determine its fitness value for steering the 
robot from initial locations near the desired path to 
final locations on the path such that steady state and 
final pose errors are minimized. This evaluation 
involves frequent simulation of the robot’s motion 
from each of a finite number of initial conditions until 
either the goal state is achieved or the allotted time 
expires. The initial conditions are referred to as fitness 
cases in the GP community. For this problem we use 
eight different initial conditions, which is a logical 
choice given the pair-wise symmetry of the possible 
error categories illustrated in Figure 2. Consider error 
category (d), which represents a case where the robot 
is located on the left of the desired path with a negative 
heading orientation. There also exists a symmetric case 
where the robot is located on the right of the desired 
path with a positive heading orientation. These 
symmetric cases are each represented by error category 
(d). The same holds for category (a), (b) and (c) 
illustrated in the figure, yielding a total of eight fitness 
cases that fully describe the possible combinations of 
errors with respect to the path. 

The fitness function is a measure of performance 
used to rank each individual relative to others in the 
population. We compute path tracking performance by 
summing the Euclidean norms (normalized) of the 

final error states plus the average control effort ( ) 

over all eight fitness cases. Thus, the following fitness 
function drives the evolution process 
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where d  and   are the position error and 
orientation error existing at the end of each fitness case 
simulation. The objective of this fitness function is to 
minimize final path tracking errors as well as the 
control effort expended. As such, a perfect fitness 
score is zero and, in general, lower fitness values are 
associated with better controllers. Simulations thus far 

showed that including   as part of the path tracking 
metric significantly reduces undesired steering 
oscillations. Fitness functions based solely on final 
error states sometimes yielded impractical controllers 
that exhibited rapid oscillations in the steering control 
signal, which would cause damage to the steering 
mechanism of a real mobile robot. 

The path tracking success of an individual in the 
population is also based on its ability to minimize 
tracking errors to within the following specified 

tolerances, 
|| d <0.15m and |

| <0.26 rad., for each 
fitness case. A fitness case simulation in which these 
tolerances are satisfied is considered a hit, or 
successful trial. Thus, each individual has the potential 
of receiving a total of eight hits during fitness 
evaluation. 

 

 
Figure 2. Error categories for control problem. 

 
2. Results 

In this section, we present representative results 
of simulated path tracking performance for an evolved 
controller. The simulated robot is based on Hemami's 
kinematic model with dimensions taken from the 
Hero-1 mobile robot. The Hero-1 has a tricycle wheel 
configuration in which the front wheel is driven by a 
DC motor and steered by a stepper motor. Its two rear 
wheels are passive. Dimensions employed are 0.3m for 
the wheelbase, and 0.2m for the offset from the rear 
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axle to the front wheel. These dimensions correspond 
to the constant lengths 2d and MP of Figure 1, 
respectively. All simulations were conducted assuming 
a controller sampling rate of 20 Hz and run for a 
maximum of ten seconds. In each case, the robot 
travels at a constant nominal forward speed of 1.5 m/s 
unless otherwise stated. 

The GP system was implemented in the C 
programming language on a 260 MHz MIPS DEC 
station. Five consecutive runs (initialized using 
different random number generator seeds) were 
executed on a population of 200 individuals for a 
maximum of 50 generations. About one hour of 
computation time is required for a run of this 
magnitude. A rule base of 25 rules emerged as the 
fittest among all five runs. This rule base used five 
conjunctive rules, three employing the Mamdani t-
norm and two employing the Larsen t-norm. The 
evolved input membership functions associated with 
the best rule base are shown in Figure 3 and the rules 
are listed in Table 1. The notations NB, NS, Z, PS, and 
PB represent fuzzy linguistic terms of “negative big”, 
“negative small”, “zero”, “positive small”, and 
“positive big”, respectively. Terms describing the 
inputs, d and , are preceded with the prefix “p” and 
“o” respectively. The fixed output membership 
functions are shown in Figure 4, where the linguistic 
terms are labeled without prefixes. 

The evolved controller received a raw fitness of 
0.1091 with 8 hits. In [4], an FLC designed manually, 
through a lengthy process of trial-and-error, was 
presented which also used 25 rules. Hours of iterative 
refinement of membership functions and rules were 
invested before arriving at a suitable design. In 
comparison, the hand-derived FLC received a 
comparable raw fitness (0.08 with 8 hits) for the 
identical tracking problem. Figure 5 shows the 
temporal responses of position error, orientation error, 
and control effort for the evolved controller and for the 
hand-derived controller. This result corresponds to 
error category (d) of Figure 2, with initial conditions of 

d  = 0.8 m and   = -0.9 rad. In [8] it was shown 
that this error category is the most general for studying 
path tracking by tricycle-type vehicles. It is most 
general in the sense that in the process of correcting 
vehicle steering from initial states in all other error 
categories, the vehicle error status ultimately reduces 
the category (d) of Figure 2 or its counter-pair. In all 
fitness cases, the evolved controller achieved 
comparable response characteristics to those of the 
hand-derived controller using an equivalent number of 
rules. 

 

 
Figure 3. Co-evolved input membership functions. 

 

 
Figure 4. Output membership functions. 

 
TABLE 1. Best Evolved Rule Base 

1 IF oZ THEN NS 
2 IF pPB THEN Z 
3 IF pNB THEN Z 
4 IF pPS THEN NB 
5 IF pNS and oPS THEN NS (Mamdani’s min) 
6 IF pNB THEN PB 
7 IF oNS THEN Z 
8 IF oNB THEN PS 
9 IF pNS THEN NS 
10 IF pNS and oZ THEN PB (Larsen’s prod) 
11 IF oPB THEN NB 
12 IF pNS and oPB THEN NB (Larsen’s prod) 
13 IF pPS THEN NS 
14 IF oNS THEN PB 
15 IF pPB THEN NB 
16 IF oZ THEN PS 
17 IF oNB THEN PB 
18 IF pNS and oNS THEN PB (Mamdani’s min) 
19 IF pNS THEN Z 
20 IF oPS THEN NB 
21 IF pZ THEN PS 
22 IF pPB and oZ THEN Z (Mamdani’s min) 
23 IF pPB THEN PS 
24 IF oPS THEN PS 
25 IF oNS THEN PS 
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6. Robustness Characteristics 
Given the capability to evolve FLCs that can 

effectively follow paths, an important next step is to 
examine their robustness to practical perturbations. To 
test the noise robustness of the evolved controller, 
simulations were performed with the imposition of a 
noise signal upon the sensor measurement related to 
heading (orientation). We assume that the error states 
are derived from sensor measurements which, due to 
their imperfect nature, introduce an additive sinusoidal 
noise signature of small amplitude and low frequency 
(relative to the controller sampling frequency) that 
corrupts the orientation error. For this investigation we 
impose the sensor noise signal, n(t) = 0.15cos(3t) with 
t = kT, where k=1,2,3,... is the sampling instant, and T 
is the sampling period. Thus, the noise amplitude is 
bounded by 0.15 radians (10 degrees), and at any 
sampling instant the corrupted orientation error signal 

lies in the range of (   0.15) radians. 
In addition to the additive noise, we also 

increased the constant nominal forward speed of the 
robot by 20%, which resulted in a simulated speed of 
1.8m/s. A typical result is shown in Figure 6, which 

illustrates the performance of both the evolved 
controller and the hand-derived controller when 
induced with noise and an increased vehicle speed. 
While the oscillatory effects of the added noise are 
clearly evident in the steady state response, the 
controller successfully navigates the robot onto the 
path and maintains the steady state errors within the 
tolerances specified earlier. Thus, this evolved fuzzy 
controller exhibits path tracking robustness to the 
imposed perturbations. This result is representative of 
temporal responses for each of the remaining fitness 
cases. In simulations completed thus far, the most 
robust fuzzy controllers were those evolved when GP 
was allowed to randomly select t-norms. 

The performance assessment of the evolved 
controller with regard to robustness is based upon the 
assumption that low frequency oscillations within the 
control signal of amplitude less than 0.026 radians (1.5 
degrees) are practical. In light of this assumption, the 
results indicate that the evolved FLC was able to 
navigate the robot along the desired path with the 
imposed perturbation of sensor noise and the increase 
in the robot’s nominal speed. 

 

 
Figure 5. Evolved FLC path tracking performance. 
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Figure 6. Evolved FLC response to sensor noise and increased forward speed. 

 
7. Conclusions 

This paper has demonstrated an approach to path 
tracking controller design based on soft computing 
methods. GP was successfully applied to discover 
fuzzy controllers capable of navigating a mobile robot 
to track straight-line paths in the plane. The 
performance of the best-evolved FLC was comparable 
to that of a manually derived FLC, which required a 
considerably longer design cycle. GP simultaneously 
evolved membership functions and rules for an FLC 
that demonstrated satisfactory responsiveness to 
various initial conditions while utilizing minimal 
human interface. The speed of evolution alone serves 
as a strong basis for practical application of GP in the 
controller design process. The approach enables 
expeditious design of FLCs that can be directly applied 
to a physical system. Alternatively, human experts can 
use the rapidly evolved FLCs as design starting points 
for further manual refinement. Finally, the evolved 
FLC was shown to be robust to perturbations of sensor 
noise and an increase in nominal robot speed. This 
supports the notion that genetically evolved FLCs can 
have practical utility. 
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