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ABSTRACT: Relationships structure-toxicity have been studied for a set of 42 organophosphate pesticides 
(OPs) through multiple linear regression (RLM) and artificial neural networks (RNA). A model with three 
descriptors, including: total lipophilicity [log(P)], widths radicals R1 [(LR1)] and R2 [(LR2)] and has achieved 
good results in phase Training and phase prediction of toxicity [log LD50 (lethal dose 50, Oral rat)]. The linear 
model (RLM: n=40,  r²=0.86, s=40 and q2 = 0.66) and non-linear model with a configuration [3-6-1] (RNA:  
r²=0.95, s=0.73 and q2 = 0.17) have proved very successful and complementary. The selected descriptors 
indicate the importance of lipophilicity and widths radicals R1 and R2 in the contribution of the toxicity of 
pesticides derived from OPs used in this study. This information is relevant to the design of a new model of 
non-toxic pesticides OPs.  
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INTRODUCTION  
The pesticide is a limit generic for a 

variety of classes such as chemical herbicides, 
fungicides and nematicides. The techniques of 
computer simulation still more effective means 
potentially offering alternatives to probe relations 
structure-toxicity. The objectives of our study are 
to provide additional information on the behaviour 
of organophosphorus compounds and set in the 
future the necessary criteria for designing a model 
for a new generation of organophosphate 
pesticides.  

The use of quantitative relationships 
structures QSAR activities currently has 
considerable attention [1] for pharmaceutical needs 
[2], as well as the study of the toxicological 
mechanisms of chemical environmental pollutants 
(products Endocrine disrupting phytochemicals) 
[3]. Today, a large number of families of 
compounds have already been the subject of such 
research. Among these families is organophosphate 
pesticides. 

Pesticides especially organophosphate 
(OPS) are the most used in the world of agricultural 
production. Of these, 70% are highly toxic, 
although they have a low persistence and are easily 
biodegradable, they are subject to ecological 
concerns because they are toxic to non-target 
species even at low concentrations. [4]. 

In recent years, chemists and biologists 
have paid great attention to quantitative structure-
activity relationships, known as QSAR. The 
development of such relationships successfully 
predicts certain properties and activities of 
chemical structures without recourse to synthesize 
or test them [5]. 

Indeed, one of the major concerns of 
scientists is to have a pesticide that is more 
effective and less toxic. Only the achievement of 
these objectives will guarantee the development of 
the pesticide market. It is within the framework of 
this perspective that our approach, which allows 
not only to distinguish between the variation of the 
toxicity between the different pesticide molecules, 
but also to establish an effective model on a data 
bank of 42 pesticides Organophosphorus. 
 
 

1. Materials and methods 
1.1. Experimental data 

In order to establish our model of 
quantitative structure-toxicity relationship, we 
collected a sample, as wide possible, of 42 
organophosphate compounds described in 
FOOTPRINT's PPDB database [6], with activity 
values Specific ecotoxicologicals of acute oral 
toxicity for rats (mammalian test organisms).  
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Table 1: Chemical structures of the compounds studied and experimental values of logDL50 (lethal dose 50, 
oral, rat). 

N X R1 R2 
log 

LD50 

(Exp) 

N° X R1 R2 
log LD50 

(Exp) 

1 S C2H5 
 

1,08 11 S CH 3 
 

3,45 

2  CH 3 
 

0,95 12 S C2H5 

 

1 

3 S CH

CH3

CH3 
 

2,43 13 O CH 3 
 

1,48 

4 S CH 3 

 

3,20 14 S C2H5 

 

1,85 

5 S C2H5 

 

1,72 15 S C2H5 

 

2,23 

6 S C2H5 
 

1 16 O CH 3 
 

1,90 

7 S C2H5 

 

1,64 17 O CH 3 

 

1,23 

8 O C2H5 

 

1,08 18 O CH 3 
 

2,40 

9 S C2H5  0,84 19 S C2H5 
 

1,59 
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H2
C C
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N
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1,82 

 
 The chemical structures of the series of the organophosphate compounds studied are grouped in table 1 
with the logDL50 values used as a dependent variable. All these compounds have the motif [P (o) (o)] as a 
common chemical structure (Figure 1.).  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: General structure of the organophosphorus pesticides. 
 
 
 
1.2. Analysis by Multiple Linear Regression (MLR)  

A total of 63 physicochemical descriptors were generated to code each molecule by the MMP program 
[7].  

The experimental data, containing all the values by n compounds (n = 42), was subjected to Multiple 
Linear Regression analysis [8]. We used two main approaches in the MLR: the stepwise regression approach 
[9]; and the "backward" approach, [10]. The contributions of the relevant descriptors are calculated using the 
Gore method [11] [12], which excludes a single example of all the data for build the entire test.leave-one-
out.The predictive power of the model has been evaluated by the cross-validation method. 
 
 1.3. RNA analysis  
 In neural networks, the units are organized in indexed lyers. Each unit receives as input the outputs of 
the previous lyer. The evaluation of the impact of the relevant descriptors [13] is to remove each time a 
descriptor i of the initial architecture and train the network, then calculate its contribution.  

 
2. RESULTS AND DISCUSSIONS 
 2.1. Establishment of RLM models  

Given the large number of 57 descriptors used to code each molecule, we subjected our data matrix to 
Stepwise stepwise selection [14, 15, 16], in order to highlight the most relevant descriptors. The two steric 
parameters width of radical R1 [L(R1)], radical R2 [L(R2)], and lipophilicity [Log P], represent the relevant 
descriptors in the determination of the toxicity of these organophosphorus pesticides studied. The best model 
obtained by the multiple linear regression is the following (equation1): 

 
Equation 1: Log10(LD50) =  
(3,858±0,790) + (0,081±0,023)*LogP -(0,938±0,133)* [L(R1)] + (0,257± 0,062)* [L (R2)] 
n = 4 ; r = 0,84 (r² = 0,64) ; s = 0,45 ; F=29,52 

The contributions of the parameters [L(R1)], [L (R2)] and Log P are respectively 45.78% 33.33 and 
20.89%. The model is statistically significant and accounts for up to 63% of initial information. The residual 
standard deviation is relatively small (s = 0.45), it is of the order of the error generally committed in biological 
tests of this type. The large contribution of the width of the substituent R1 reflects the great influence of the size 
of this substituent in particular on the toxicity of organophosphorus pesticides.  
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To get closer and closer to the experimental error that is generally of the order of 5% and to check the 

prediction limits in our sample, we applied (which is of the order of 0.4781) to the sample of 42 molecules. We 
obtained a new sample of 40 molecules. The application of multiple linear regression to this sample leads to 
equation (2) after elimination of molecules 39 and 40:  

 

 

 

 

 

 

Figure 1 : Description of architectural Neural network 
The comparison of this classification with that obtained in the linear model reveals a change of order 

between Log P, L (R1) and L (R2). This change can be explained by the possible existence of a non-linear 
relationship between activity and lipophilicity, which is not the case for widths.  

 

Equation 2: Log(LD50)=(1,941±0,064)+ 
(0,360±0,082)*LogP - (0,581±0,077)* [L(R1)]  + 0,273(±0,070)* [L (R2)] 

 

 

 
The statistical quality of the equation is very good, it explins 73% of the total variance, and higher than 

the other models described in the literature if we take into account the number of descriptors used. It explains up 
to 73% of the total variance with a standard error "s" much lower than the average error made on the observed 
values of Log (LD50) which is of the order of 0.741 for an interval ranging from 0, 66 to 3.45. to show that our 
model is not due to chance, we applied the experiment of changing the column of the dependent variable 
randomly so that each molecule does not find its true activity but the activity of a another molecule, without 
touching the columns of the independent variables. The result of this test on the sample of 42 molecules shows 
that the statistical quality of our model decreases very remarkably, it goes from r = 0.86, s = 0.40 and F = 32.18 
at r = 0.46, s = 0.60 and F = 0.07. This result clearly indicates that the descriptors selected for this study describe 
well the activity of the series of organophosphorus compounds. 
 
 
 2.2. ESTABLISHMENT OF NON-LINEAR MODELS:  

Neural network. In order to improve the linear model obtained and test the possibility of non-linear 
effects that may possibly exist between the activity and the descriptors of the linear model, we used the artificial 
neural network. The neural network employed therefore has the architecture [3-6-1], (three neurons in the input 
lyer, six neurons in the hidden lyer and a neuron in the output lyer). 
 

This preliminary study (Table 2) allowed us to conclude that the neural network with the architecture 
[3-6-1] schematized in figure 2 is able to establish a satisfactory relationship between the relevant descriptors 
and the Log activity (LD50). We observe an improvement in the statistical parameters of the non-linear model (r 
= 0.95 and s = 0.17) compared to the linear model (r = 0.86 and s = 0.40), which suggests the existence possible 
non-linear relations between the activity and the descriptors. The evaluation of the contribution of the relevant 
descriptors gives the following classification: LogP> L(R1)> L (R2). 
 
 
 
 

n = 40 ; r = 0,86 (r² = 0,728); s = 0,40; F = 32,18 

Log P 

 L (R1) 

L (R2)  

input lyer 

hidden lyer 

output lyer 

Log LD50 
 

 

 

 

 

 

 

 

 
 

r = 0,951, s = 0,17354
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Table 2: variation of r2 and s with number of neurons 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Conclusion  
Because some organophosphorus 

compounds are known for their pesticidal 
properties, [18]. we have established a study of the 
quantitative relationships between the molecular 
structure and toxicity of a series of 
organophosphorus pesticides, with the aim of 
predicting the activity of new products at high 
levels added value.  

QSAR models are expected to play an 
important role in the risk assessment of chemicals 
on humans [19]. The most relevant descriptors 
were evidenced by stepwise linear multiple 
regression analysis. The analysis of the statistical 
parameters of models published in the literature 
shows that our model is more efficient [20,21, 22]. 
Its generate the steric aspect, expressed both by the 
widths of the radicals R 1 and R 2 and the however, 
the nature of the heteroatom (X) does not seem to 
have a decisive effect on the activity of 
organophosphorus pesticides. The structure-toxicity 
relationship model thus produced during this work 
can be classified as a predictive model that assists 
in the selective design of new molecules with low 
toxicity, in the family of organophosphorus 
compounds. Indeed, the analysis of the schematized 
model, based on a molecular description of the 
organophosphorus compounds, shows that a low 
toxicity (high LD50) is associated with a low value 
in [L(R1)], a global lipophilicity and a width. 
[L(R2)] more important. In conclusion, this 
prediction model makes it possible to avoid 
experimental tests and provide an immediate result. 

For future developments, lazy structure–
activity relationships [23] will be established and 
tested algorithms, semantic web aware web 
services, and language bindings, which can serve as 
building blocks for new algorithms and 
applications. We hope that these facilities will 
speed up the development cycle of future predictive 
toxicology applications, and will ultimately lead to 
improved and more relevant applications in this 
area. 
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