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Abstract: The problem of locating roots of nonlinear equations (or zeros of functions) occurs frequently in scientific 
work. In this paper, we have introduced some techniques for solving nonlinear equations. The techniques were based 
on the central-difference and forward-difference approximations to derivatives. We have shown that that three of the 
four methods have cubic convergence and another method has quadratic convergence. The introduced methods can be 
used for solving nonlinear equations without computing derivatives. Meanwhile, the methods introduced in this paper 
can be used to more class of nonlinear equations. The numerical examples shown in this paper illustrated the 
efficiency of the new methods. We used the well known software MATLAB 7 to calculate the numerical results 
obtained from the proposed techniques. 
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1.1 Introduction  

The relaxed Newton’s method modifies the 
classical Newton’s method with a parameter in such a 
way that when it is applied to a polynomial with 
multiple roots and we take as parameter one of these 
multiplicities, the order of convergence to the related 
multiple root is increased. For polynomials of degree 
three or higher, the relaxed Newton’s method may 
possess extraneous attracting (or even 
super-attracting) cycles.1 The eighth chapter presents 
some algorithms and implementations that allow us to 
compute the measure (area or probability) of the basin 
of a p-cycle when it is taken in the Riemann sphere. 
We quantify the efficiency of the relaxed Newton’s 
method by computing, up to a given precision, the 
measure of the different attracting basins of 
non-repelling cycles. In this way, we can compare the 
measure of the basins of the ordinary fixed points 
(corresponding to the polynomial roots) with the 
measure of the basins of the point at infinity, and the 
basins of other non-repelling p-cyclic points for p > 1: 
The aim of the ninth chapter is to provide an overview 
of theoretical results and numerical tools in some 
iterative schemes to approximate solutions of 
nonlinear equations.2 We examine the concept of 
iterative methods and their local order of convergence, 
numerical parameters that allow us to assess the order, 
and the development of inverse operators (derivative 
and divided differences). We also provide a detailed 
study of a new computational technique to analyze 
efficiency. Finally, we end the chapter with a 

discussion on adaptive arithmetic to accelerate 
computations.3 

Most of the real life-problems are non-linear 
in nature therefore it is a challenging task for the 
mathematician and engineer to find the exact solution 
of such problems. In this reference, a number of 
methods have been proposed/implemented in the last 
two decades. Analytical solutions of such non-linear 
equations are very difficult, therefore only numerical 
method based iterative techniques are the way to find 
approximate solution. In the literature, there are some 
numerical methods such as Bisection, Secant, 
Regula-Falsi, Newtonphson, Mullers methods, etc., to 
calculate an approximate root of the non-linear 
transcendental equations. It is well known that all the 
iterative methods require one or more initial guesses 
for the initial approximations.4 

In Regula-Falsi method, two initial guesses 
are taken in such a way that the corresponding 
function values have opposite signs. Then these two 
points are connected through the straight line and next 
approximation is the point where this line intersect 
the x-axis. This method gives guaranteed result but 
slow convergence therefore several researchers have 
improved this standard Regula-Falsi method into 
different hybrid models to speed up the convergence. 
Thus previously published works have 
revised/implemented Regula-Falsi method in several 
ways to obtain better convergence. However, it is 
found that modified form of Regual-Falsi method 
becomes more complicated from computational point 
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of view.5 Therefore, in the present work Regual-Falsi 
method has been used as its standard form with 
Newton–Raphson method and found better 
convergence. Newton–Raphson method is generally 
used to improve the result obtained by one of the 
above methods. This method uses the concept 
of tangent at the initial approximation point. The next 
approximate root is taken those value where the 
tangent intersect the x-axis. So this method fails where 
tangent is parallel to x-axis, i.e. the derivative of the 
function is zero or approximately zero. The order of 
convergence of Newton–Raphson method is two, 
therefore it converges very rapidly than other methods 
(Bisection, Regula-Falsi, etc.). However it does not 
always give guaranteed root. Many scientists and 
engineers have been proposed different hybrid models 
on Newton–Raphson method.6 

It is clear from the survey, that the most of 
new algorithms are either based on three classical 
methods namely Bisection, Regula-Falsi and 
Newton–Raphson or created by hybrid processes. In 
the present work, the proposed new algorithm is based 
on standard Regula-Falsi and Newton–Raphson 
methods, which provides guaranteed results and 
higher order convergence over Regula-Falsi method. 
The new proposed algorithm will work even the first 
derivative equals to zero where Newton–Raphson 
method fails.7 

A large number of papers have been written 
about iterative methods for the solution of the 
nonlinear equations [3, 7, 8, 9, 10, 12, 13]. In this 
paper, we consider the problem of finding a simple 
root x∗ of a function f : D ⊂ R → R i.e., f (x∗) = 0 and 
f 0 (x∗) 6= 0. The famous Newton’s method for 
finding x∗ uses the iterative method: 
   xn+1 = xn − f (xn)  
     f 0 (xn) , 
REplace  ’ 
 Newton’s Raphson method is a very simple and 
elegant technique to find out the roots of a wide 

variety of the problems. But it has a drawback that it 
may fail if the derivative is approaching to zero near 
the root or the initial guess is not proper. In this work 
an alternative to Newton’s method is presented by the 
authors. 8 
One of the most studied problems in Numerical 
Analysis is the approximation of nonlinear equations. 
A powerful tool is the use of iterative methods. It is 
well-known that Newton’s method, 
  Most used iterative methods to approximate 
the solution x of F.x/ D 0. The quadratic convergence 
and the low operational cost of Newton’s method 
ensure that it has a good computational efficiency. If 
we are interesting in methods without using 
derivatives, then Steffensen-type methods will be a 
good alternative. These methods only compute 
divided differences. 9 
1.2 A Family of New Algorithms 
Two different classes of iteration techniques to find 
the roots are presented. 10 
1.2.1 Consider the equation f (x) = 0 whose roots are to 
be found. Let    be the exact root and x0 be the initial 
guess known for the required root. Assume the first 
approximation to the required root as x1 = x0 + h, where 
h is  very small. 
1.2.1(a) Consider the following auxiliary equation 
with a parameter p 

0)()()()( 222
0

2  xfxfxxpxg  

        …(1.1) 

where p  R and p < ∞. The root of f (x) will also be 

a root of equation (1.1) and vice versa. Since   x = x1 = 
x0 + h is an approximation of the required root, 
therefore equation (1.1) gives, 

p2 h2 f 2 (x0 + h) – f 2 (x0 + h) = 0,  
   
Expanding by Taylor’s theorem (retaining the terms 
up to O( h2) and excluding the term containing second 
derivative) 
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To avoid the loss of significant errors implicit in this formula, numerator is rationalized to obtain the formula, 
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In this the sign is so chosen to make the 

denominator largest in magnitude. The first 
approximation to the required root is given by,  

             x1 = x0   
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Therefore, the successive approximations are given by,  

             xn+1  = xn
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 ,  n = 0, 1…

        …(1.3) 

The parameter p is chosen such that the corresponding 

function p f (xn) and f  (xn) have the same signs, so as 

to make the denominator largest possible. Letting p → 
0 in equation (1.3), reduces to Newton’s formula. 
1.2.1 (b) When an auxiliary equation of the following form is 
assumed,   

0)()()()( 2
0

2  xfxfxxpxg      

                       …(1.4) 
where  p   R, the root of the equation f (x) = 0 is also 
the root of equation (1.4). Putting x = x1 = x0 + h in 
equation (1.4) and proceeding as in section 1.2.1 (a) 
general formula for successive approximation is given 
by, 
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 The sign should be so chosen so as to the 
denominator is largest in magnitude. Again equation 
(1.5), reduces to Newton’s formula, if p → 0. 11 
 
1.3 Convergence Analysis 

Let   is a root of 0)( xf . An approximation of 

the root is given by nn ex  , where en is error. 

Using Taylor’s series, expansions of )( nxf  and 

)(
n

xf   given by equations (2.9) and (2.10), one 

gets, 12 
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Equations (1.5), can be rewritten as, 
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Using equations (1.6) and (1.7) in equations (1.8), one gets, 
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 which shows that the technique is quadratically 
convergent for each pR. Similarly, sequence {xn} 
generated by iteration formula (1.3), with  parameter 

p, can be proved to be at least quadratically 
convergent.  

 
Table 1.1 : Comparison of equation (1.5) with Newton’s method. 

S.N. Equation 
Initial 
Guess 

Newton’s  
Method 

Equation (1.5)  
    for p=1 

1. 0110 x  0.0 Fails           1 

2. 042 x  0.0 Fails           2 

3. 044 24  xx  
7

21
 Divergent           0 

4. 0tan 1  x  3 Divergent           0 

1. 0sin x  1.5 5663709641.12            0 

1. 0ln x  5 Divergent           1 

7. 013072

 xxe  2 Divergent           3 

8. 0cos1  xex   10.0  3182411194.7  0.3692564070 

 
1.4 Numerical Examples 
 A comparison of the formula proposed in 
section 1.2.1(b) with Newton’s method is presented in 
Table 1.1 with the help of various examples. The 
formulae of section 1.2.1(b) are tested for p=1. The 

termination criterion is taken as )(xf  < 1.0 x 10-11. 

13,14 

 
1.5 Conclusions 
 The problem of locating roots of nonlinear 
equations (or zeros of functions) occurs frequently in 
scientific work. In this paper, we have introduced 
some techniques for solving nonlinear equations. The 
techniques were based on the central-difference and 
forward-difference approximations to derivatives. We 
have shown that that three of the four methods have 
cubic convergence and another method has quadratic 
convergence. The introduced methods can be used for 
solving nonlinear equations without computing 
derivatives. Meanwhile, the methods introduced in 
this paper can be used to more class of nonlinear 
equations. The numerical examples shown in this 
paper illustrated the efficiency of the new methods. 

We used the well known software MATLAB 7 to 
calculate the numerical results obtained from the 
proposed techniques.  
 From Table 1.1, it is observed that the 
formula (1.5) can be used as an alternative to 
Newton’s technique, for the problems for which the 
latter fails or diverges. 
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