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Abstract: This paper demonstrates the potential and advantages of the Ensemble Kalman filter (EnKF) as a tool for 
assisted history matching, based on its sequential processing of measurements, its capability of handling parameter 
set, and on the fact that it solves the combined state and parameter estimation problem. The EnKF is a Monte Carlo 
method for data assimilation that uses an ensemble of reservoir models to represent and update the covariance of 
variables. Formation properties are one of the key factors in numerical modeling of flow and transport in geologic 
formations in spite of the fact that they may not be completely characterized. The incomplete knowledge or 
uncertainty in the description of the formation properties leads to uncertainty in simulation results. In this study, the 
ensemble Kalman filter (EnKF) approach is used for continuously updating model parameter such as fracture length 
in a fracture well and model variable such as pressure while simultaneously providing an estimate of the uncertainty 
through assimilating dynamic and static measurements. The proposed algorithm uses an ensemble data assimilation 
approach to provide stochastic characterization of reservoir attributes by conditioning individual prior ensemble 
members on dynamic production observations at wells. The prior sample mean and covariance are derived from 
nonlinear dynamic propagation of an initial ensemble of reservoir properties.  
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1. Introduction  
The Ensemble Kalman Filter (EnKF) was 

introduced by Evensen (1994) for updating non-linear 
ocean models. It is a Monte Carlo approach where 
errors are represented by an ensemble of realizations. 
The model parameters and state variables are updated 
sequentially in time, as new measurements become 
available. The result is an updated ensemble of 
realizations, conditioned to all production data, which 
provides an improved estimate of the model 
parameters, the state variables, and their uncertainty. 
Since its first application within the pertroleum 
industry, several publications have discussed the use 
of the EnKF for parameter estimation in oil 
reservoirs, and have shown promising results. 
Nevertheless, most published papers present synthetic 
cases (e.g. Nævdal et al., 2002, Gu and Oliver , 
2005), while real field applications have only recently 
been considered. Previous works that demonstrate the 
capability to use the EnKF for history matching real 
reservoir models are Skjervheim et al. (2005), 
Haugen et al. (2006), Bianco et al. (2007), and 
Evensen et al. (2007). All these studies conclude that 
the EnKF is able to significantly improve the match 
of production data compared to manual history 

matching, and to provide improved estimate of model 
parameters. Previously, the focus has mainly been on 
the estimation of porosity and permeability fields in 
the simulation models. In Evensen et al. (2007), 
parameters such as initial fluid contacts, and fault and 
vertical transmissibility multipliers, are included as 
additional uncertain parameters to be estimated. 

In this paper, the EnKF is presented as a 
method for history matching reservoir simulation 
models and discussed in relation to traditional 
methods where a cost function is minimized. The 
EnKF history matching workflow for applications in 
reservoir management projects is described in some 
detail. The properties of the EnKF are demonstrated 
in a real field application where it is illustrated how a 
large number of poorly known parameters can be 
updated and where the uncertainty is reduced and 
quantified through the assimilation procedure. It is 
shown that introduction of additional model 
parameters such as the relative permeability leads to a 
significant improvement of the results when 
compared with previous studies. Finally, the updated 
ensemble is used to predict the uncertainty in future 
production. 
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2. Background and Methodology 
This section briefly discusses the EnKF 

formulation and the implementation of the proposed 
hybrid EnKF for nonlinear dynamics. We first review 
the classical EnKF formulation and introduce the 
relevant terminologies. We then present the 
modifications and the enhancements proposed in this 
paper, specifically coupling of the non-linear 
inversion and the coarse scale constraint on the 
ensemble members. 

 
3. EnKF Formulation 

 The EnKF introduced by Evensen (1994; 
2003) is a sequential Monte Carlo technique for data 
assimilation where an ensemble of model states is 
recursively conditioned to dynamic data as it 
becomes available. The mean of the ensemble is 
assumed to be the most representative estimate of the 
true, but unknown, reservoir state while the spread of 
the ensemble around the mean represents the 
associated uncertainty and is quantified by the 
ensemble-derived state covariance matrix. The initial 
ensemble can be generated using any of the standard 
geostatistical techniques such as sequential Gaussian 
simulation or indicator simulation that utilize static 
data derived from well logs, cores and seismic 
surveys, as well as geologic interpretation studies 
(Deutsche and Journel 1992). The prior ensemble of 
model realizations is then combined with available 
observations using Kalman filter equations to obtain a 
corrected ensemble. 

In the EnKF formulation, each realization is 
represented by its corresponding state vector, ��

�
 at 

time ‘k’, and it includes the vector of static variables 
��

�  (e.g. permeability, porosity) of length Ns, the 
vector of dynamic variables ��

� (e.g. pressure, phase 
saturations) of length Nd, and the vector of model 
predictions ��  (e.g. bottom-hole pressure, water-cut 
and gas-oil ratio at the wells) of length M as follows. 
Number of columns of this matrix is Ne and Number 
of rows of the matrix is proportional to the numbers 
static, dynamic and prediction or observations 
variables.  

��
�
= �

��
�

��
�

��

�																																																											(1) 

The superscript ‘p’ denotes the prior model. 
The model predictions at time ‘k’ is related to the 
state vector through the use of a measurement matrix, 
H as follows: 
�� = ���

�
																																																												(2) 

Thus, the mapping matrix H is a trivial 
matrix given by Eq. 3 where I is the identity matrix as 
follows: 

� = �0��	0��	���																																													(3) 

The EnKF works with an ensemble of model 
realizations denoted as: 

��
�
= ���,�

�
			��,�

�
		…			��,��

� �																										(4) 

Where Ne is the ensemble size. Each state 
vector represents an individual member of an infinite 
ensemble of possible states that are consistent with 
the initial measurements from cores, well-logs, and 
seismic surveys and geologic interpretation studies. 

EnKF Forecast and Update. The EnKF 
comprises of two main steps: a forecast step and an 
update step. The forecast step can be written as: 

�
��

�

��
� = ������

� ,����
� �																													(5) 

where the forward model operator g (○) 
represents a numerical solution of the porous media 
fluid flow equations moving forward from time ‘k-1’ 
to time ‘k’ when new observations become available. 
At this time, the update step modifies the reservoir 
state vector using the well-known Kalman update 
equation as follows (Evensen, 2003): 

��,�
� = ��,�

�
+ �������,�,� − ���,�

� �																							(6) 

For each model, j=1, 2,…, Ne. The 
superscript ‘u’ denotes the updated model. The 
matrix Kk is known as the Kalman gain and relates 
the data misfit to the changes required in the reservoir 
state vector. In Eq. 6, ����,�,� represents a vector of 
perturbed observations as defined by the following 
equation: 
����,�,� = ����,� + ��																																														(7) 

And ��  represents the noise in the 

observation for the ensemble member ‘j’. The noise 
associated with the measurements, ε, is assumed to be 
Gaussian with a zero mean and covariance, CD. The 
Kalman gain matrix Kk is expressed as follows 
(Evensen, 2003): 
�� = ��,�

�
��(���,�

�
�� + C�)

��																										(8) 

Where C represents an estimate of the state 
vector covariance matrix at time ‘k’ and can be 
computed from the ensemble using the following 
expression: 
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Where 
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�
=

�
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���
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Eq. 9 calculates the prior state-covariance 
matrix from the individual ensemble members. The 
posterior covariance can also be estimated in a 
similar manner using the updated realizations. An 
equivalent expression for the posterior covariance is 
provided in Eq. 11 below. 
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4. Invers problem in well testing  
In this section, a brief overview of the 

governing equations in reservoir simulation and well 
testing are presented (Bourdet, 2002; Horne, 1995). 
These equations will be referred as dynamic forward 
models in describing the data assimilation algorithm. 
The equation governing the flow is normally written 
in terms of the pressure. Since we assume radial 
symmetry, the pressure P depends only on the radius 
r and time t, the equation is as following:  

 
�

�

�

��
�r

��

��
� =

�

�

��

��
																																														(12) 

           
Here, � is diffusivity constant and is equal to 

� = 0.0002637�/���  and r (ft), P (psi), � 
(fraction), �  (cp), c (psi-1), k (md), t (hr) are the 
radius from well center, reservoir pressure, porosity, 
total compressibility, permeability and time, 
respectively.  

This is the so-called diffusivity equation and 
it is considered one of the most important 
mathematical expressions in petroleum engineering. 
This equation is derived under the assumption that 
the permeability and viscosity are constant over 
pressure, time and distance ranges. The fluid is 
assumed to be slightly compressible, like, say, oil. 

The notation 
��

��
 and 

��

��
 means partial derivative with 

respect to r and t respectively. The solution of the 
diffusivity equation for a fracturing well is given by 
the expression:  

 

�� − ��� = 4.064
��

���
�

��

����
�

�

�
																				(13)   

 
Perhaps the most common inverse problem 

in fracture well is to infer length of fracture from a 
well test. In this problem measurement of pressure 
d={p1,p2,…,pn}T are taken during initial shut in or 
drawdown period . It is assumed the pressure at the 
wellbore can be modeled using the well-known radial 
solution of the diffusivity equation, This is our 
forward model d=g(m) If enough information is 
provided one should be able to easily solve for the 
model parameter m={xlf} fracture length using the set 
of equations (12, 13) . 

 

�� = 4.064
��

ℎ(�� − ���)
�
��

����
�

�
�
													(14) 

 
Equation 14 is the solution for a very 

simplified version of an inverse problem. It was 
solved without considering noise in the observation 
and without considering any prior information. For 
instance if the model parameters interest are now 

permeability, skin factor and porosity m={��}T then 

there is not an unique solution for m. Summarizing, 
the inverse problem theory refers as the family of 
techniques that allows us to determine a plausible set 
of values for the model parameter m, given an 
optional prior description of the model  parameters 
prior, some inexact observed data dobs and an 
assumed theoretical relationship between the data and 
the model parameters:  

 
d=g(m)                                                    (15)     

 
 
5. EnKF Algorithm 

The main idea to bear in mind is that the 
EnKF is a Monte Carlo Kalman filter. Simultaneous 
state vectors are simulated, advanced in time, and 
updated for each time an observation arrives. The 
statistics of the forecast step are not available 
explicitely, as in the linear case.  In Ensemble 
Kalman filter probability density of the state is 
represented by a finite number Ne of randomly 
generated system state vectors called realization.  

The filter procedure for integration consists 
of two steps: a forecast step and an update step. 
Forecast step is to evolve the state vector forward in 
time between two consecutive measurement times 
and update step is to assimilate states of system with 
observed well bottom-hole pressure data. The two-
step procedure is repeated at each measurement time 
till the last measurements are assimilated into model. 

for the initial guess, we assume that the 
length of fracture changes 100ft ta 600ft. 100 
realizations is selected for it .i.e. we have 100 values 
in interval of [100-600] with the mean of 347.5230ft 
and standard deviation of 142.2707ft, uniformly.  

 In the prediction step, equation (13) is used 
for model dynamic to predict fracture length.  

In the assimilation step, first, we must 
estimate the mean ensemble, predicted covariance 
matrix and Kalman gain from equations 10, 9, 8, 
respectively. Each realization and state error 
covariance matrix are updated by arriving the 
observation ����, from equations 6,11. If we receive 
a new observation, we go to the prediction step. 

 
6. Results  

We know from rock properties literatures, 
usual fracture wells have fracture length within range 
of 100 to 600 ft. based on type of sedimentation 
process. So, our prior quantitative knowledge is that 
unknown fracture length is distributed uniformly in 
the range of [100-600] ft. i.e. �(���)~�(100,600). 

Here, U stand for uniform distribution.  
Figures 1,2,3,4 show histograms of xf during 

the data assimilation. Analysis of these Figures show 
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that range of data for xf is reduced from [100-600] 
with the mean of 357.7070 and standard deviation of 
143.4537 in initial guess to [160.4 - 461.48] with the 
mean of 254.8322 and standard deviation of 58.9142 
in the second step (after assimilation of second 
measurement) to [192-242] with the mean of 
209.1953 and standard deviation of 13.3513 in the 
seventh step (after assimilation of seventh 
measurement) to [199.5-202.5] with the mean of 
201.3403 and standard deviation of 1.8643 in the last 
step (after assimilation of last measurement). 

In Figure 5, 30 measurement data were 
assimilated. This figure shows that the ensemble 
mean fracture length is approaching to a constant 
value (true value 200 ft.).Figure 6 shows ensemble 
mean pressure and observation pressure. From these 
Figures we understand that after 20th time step, model 
and observation data match from each other and 
mean fracture length converges with time. 

Figures 7 and 8 represent standard deviation 
of fracture length and pressure evolution through time 
respectively. We understand from this Figure that the 
standard deviation in initial time steps is high and 
with passing time this value is low and tends to zero.   

 
 

 
Figure 1. Histogram of xf without data      
assimilation (initial guess) 

 
 
 
 
 
 

 
 

 
Figure 2. Histogram of xf after assimilation of second 
measurement 
 
 

 
Figure 3. Histogram of xf after assimilation of 7th 
measurement 
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Figure 4. Histogram of xf after assimilation of last 
measurement 

 

 
Figure 5. Ensemble mean fracture length through 
time 
 
 
 
 
 
 

 
 

 Figure 6. Ensemble mean pressure with observation 
pressure through time 

 

 
Figure 7. Standard deviation of fracture length 
through time 
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Figure 8. Standard deviation of pressure through time 
 
 
 
 
7. Conclusions 

We have demonstrated that the ensemble 
Kalman filter is an algorithm that is well suited for 
producing forecasts with uncertainty. It is observed 
that the forecasts are improved after assimilation of 
production data. 

Through this research, we found that the 
EnKF is suitable for data from time series when the 
changes made to the model parameters and state 
variables are both small at every measurement time. 

The well can be monitored online and any 
change in fracture length in any time can easily be 
identified. Uncertainty of prediction is always up-to-
date and directly computed from the ensemble. 
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