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Abstract: Digital filtering occupies an extremely important position in the digital signal processing [1]. This paper 
introduces the new concept of using Matlab with Graphical User Interface in designing FIR (Finite Impulse 
Response) digital filters and IIR (Infinite Impulse Response) digital filters. Matlab, which is a high-performance 
numerical calculation program and provides a powerful function of graphical display. Matlab is widely used in 
engineering calculation, numerical analysis, etc. [2]. This paper introduces the definition and basic principles of FIR 
& IIR digital filters. In this paper we have designed Graphical User Interface consists of almost all types of IIR 
filters and FIR filters. User simply have to insert filter specifications on GUI and get magnitude response, phase 
response, etc. of required filter. 
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1. Introduction 

A fundamental aspect of signal processing is 
filtering. Filtering involves the manipulation of the 
spectrum of a signal by passing or blocking certain 
part of the spectrum, depending on the frequency of 
those parts. Filters are designed according to what 
kind of manipulation of the signal is required for a 
particular application. Digital filters are implemented 
using three fundamental building blocks: an adder, a 
multiplier, and a delay element and they represent the 
Capacitor, Inductors and Resistance in the analog 
filtering. 

With these basic building blocks, the two 
different filter structures can easily be implemented. 
These two structures are Infinite Impulse Response 
(IIR) and Finite Impulse Response (FIR), depending 
on the form of the system’s response to a unit pulse 
input. IIR filters are commonly implemented using a 
feedback (recursive) structure, while FIR filters 
usually require no feedback (non-recursive). The 
design process of a digital filter is long and some way 
is a kind of routine if done by hand. With the aid of 
computer programs performing filter design 
algorithms, designing and optimizing filters can be 
done relatively quickly.  

A filter with linear phase response is 
desirable in many applications such as image 
processing and data transmission. One of the 
desirable characteristics of FIR filters is that they can 
be designed very easily to have linear phase. 

 
 

2. Designing of Fir Digital Filters 
2.1 Designing an Fir (Finite Impulse Response) 
Filters  

FIR filters are one of two primary types of 
digital filters used in Digital Signal Processing (DSP) 
applications, the impulse response is "finite" because 
there is no feedback in the filter as in the second type 
of filters (It will explained in the IIR filters part).A 
useful designing model for the design specifications in 
FIR design is to think of each specification as one of the 
angles in a triangle as shown fig1. 

 
 
 
 
 
 

 
 

 
Fig.1 FIR triangle model 

The model in Fig 2.2 is used to understand the 
degrees of freedom available when considering a filter 
specification. Because the sum of the angles is fixed, we 
can at most select the values of two of the specifications. 
The third specification will be determined by the design 
algorithm utilized. Moreover, as with the angles in a 
triangle, if we make one of the specifications 
larger/smaller, it will impact one or both of the other 
specifications. 
2.2 Optimal Fir Designs with Fixed Transition 
Width and Filter Order 

T.Width 

 

Order 

Ripple 
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Truncated-and-windowed impulse response 
design algorithm is very simple and reliable; it is not 
optimal in any sense. The designs are generally 
inferior to one of the order or the transition width or 
the pass band/stop band ripples, the exceeded value 
of any of them is typically undesirable in the  

Optimal designs are computed by 
minimizing some measure of the deviation between 
the filter to be designed and the ideal filter. The most 
common optimal FIR design algorithms are based on 
fixing the transition width and the order of the filter. 
The deviation from the ideal response is measured 
only by the passband /stopband ripples. This 
deviation or error can be expressed mathematically as 

( ) ( ) ( )j
LPE H H e 

      

     (2.1) 

Where ( )aH  is the zero-phase response of the 

designed filter and [0, ][ ,1]pass stop   . It is still 

necessary to define a measure to determine “the size” 

of ( )E  (the quantity we want to minimize as a 

result of the optimization) 
The most often used measures are the L-

norm (L∞ or L2) .In order to allow for different peak 
ripples in the passband and stopband, a weighting 
function W (w) is usually introduced 

( ) ( ) ( ) ( )j
W LPE W H H e 

         

    (2.2) 
The most famous two filter kinds in this field are the 
Equiripple and the Least Square Filter and they will 
described later 
 

 
Fig.2 FIR triangle model for fixed transition width and 
filter order 
 
2.3 Optimal Fir Designs With Fixed 
Transition Width And Peak Passband/ 
Stopband Ripple 

Fixed Transition width and 
passband/stopband ripple allow us to reach an 
optimum filter with a minimum number of tabs 
(order). The equations are even more dramatic when 
the passband ripple and stopband ripple 
specifications are different (unlike the equiripple 
filters). The reason is that the truncated-and 
windowed impulse response methods always give a 

result with approximately the same pass band and 
stop band peak ripple. Therefore, always the stricter 
peak ripple will cause in exceeding (possibly 
significantly) all other ripple constraints at the 
expense of unnecessarily large filter order. To 
illustrate this, we turn to a different equiripple design 
in which both the peak ripples and the transition 
width are fixed. In minimum-phase designs with 
fixed transition width and peak passband/stopband 
ripple the same procedure can be used to design 
minimum-phase filters with fixed transition width 
and peak passband/ stopband ripple. In this case, 
rather than obtaining smaller ripples, the benefit is 
meeting the same transition width and peak passband/ 
stopband ripples with a reduced filter order 

 

 
 

Fig 3. FIR triangle model for fixed transition width and 
peak passband/stopband ripple 

 
2.4 Optimal Fir Designs With Fixed Peak Ripple 
And Filter Order 

Fixing the filter order and the peak ripple 
values should result in a smaller transition width. In 
minimum-phase designs with fixed peak ripple and 
filter order, once again, if linear-phase is not a 
requirement, a minimum-phase filter can be designed 
that is better in some sense to a comparable linear 
phase filter. In this case, for the same filter order and 
peak ripple value, a minimum-phase design results in 
a smaller transition width than a linear-phase design. 

 

 
Fig. 4 FIR triangle model for fixed peak ripple and filter 
order 
 
2.5 Designing Optimal Fir Equiripple Filters With 
Fixed Transition Width And Filter Order By 
Using Graphical User Interface 
 This linear phase filter can be designed with the 

function firpm or in minimax concept by 
firgr. 
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B=firpm (N, fvector, mvector) or 
B=firpm (N, fvector, mvector, wvector) or 
B=firgr (N, fvector, mvector) or 
B=firgr (N, fvector, mvector, wvector) 

 And for Hilbert Transform that have odd 
symmetry 

B=firpm (N, fvector, mvector, 'Hilbert') or 
B=firpm (N, fvector, mvector, wvector, 

'Hilbert') or 
B=firgr (N, fvector, mvector, 'Hilbert') or 
B=firgr (N, fvector, mvector, wvector, 

'Hilbert') 
 And for the Differentiator with odd symmetry 

B=firpm (N, fvector, mvector, 'differentiator') 
or 

B=firpm (N, fvector, mvector, wvector, 
'differentiator') or 

B=firgr (N, fvector, mvector, 'differentiator') 
or 

B=firgr (N, fvector, mvector, wvector, 
'differentiator') 
 
Where 
N is the filter Order (returns a length N+1 tabs) 
fvector is the best approximation to the desired 
frequency response  
mvector  is the filter magnitude vector in the least -
Pth sense. 
wvector  is the weight error vector [5] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.5 Using Graphical User Interface for designing Hilbert bandpass filter (Fpass=0.1 , Fstop=0.9 , Order=30) 
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Fig.6 Showing Magnitude Response of Hilbert bandpass filter (Fpass=0.1 , Fstop=0.9 & Order=30).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Phase response of a bandpass filter 
 
2.6 Fir Least-Squares and Fir Constrained Least-Squares Filters 

Equiripple designs may not be desirable if we want to minimize the energy of the error (between ideal and 
actual filter) in the passband /stopband. Consequently, if we want to reduce the energy of a signal as much as 
possible in a certain frequency band, least-squares designs are preferable. 
2.7 Designing Optimal Fir Least Square Filters With Fixed Transition Width and Filter Order 
This filter can be designed with the function firls as follows 
B=firls (N, fvector, mvector)  or 
B=firls (N, fvector, mvector, bwvector) 
 
And for Hilbert Transform that have odd symmetry 
B= firls (N, fvector, mvector, 'Hilbert')  or 
B= firls (N, fvector, mvector, bwvector, 'Hilbert') 
 
And for the Differentiator with odd symmetry 
B= firls (N, fvector, mvector, 'differentiator')  or 
B= firls (N, fvector, mvector, bwvector, 'differentiator') 
Where 
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N   is the filter Order (returns a length N+1 tabs) 
fvector      is the best approximation to the desired frequency response  
mvector         is the filter magnitude vector in the least -Pth sense. 
bwvector  is the weight per band vector [5] 
 

 
 

Fig.8 Designing A lowpass Least Square filter with order=20 and band edges at 1 0.4f   and 2 0.5f   

(normalized) by using GUI. 
 

 

Fig.9 A lowpass Least Square filter with order=20 and band edges at 1 0.4f 
 and 2 0.5f 

 (normalized), 
compared with an Equiripple filter with the same specifications 
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An equiripple filter designed with firpm exhibits equiripple behavior. And a least square filter designed 
with firls filter has a better response over most of the passband and stopband, but at the band edges (f = 0.4 and f = 
0.5), the response is further away from the ideal than the firpm filter. This shows that the firpm filter's maximum 
error over the passband and stopband is smaller and, in fact, it is the smallest possible for this band edge 
configuration and filter length. 
 
2.8 Fir Windowing (Kaiser Window Design Technique) 

May be it is quite important to describe at least one of the window kind and we will take the Kaiser window 
as an example.The main problem with the window design method is that it is very difficult to trade-off between 
attenuation and transition bandwidth. Kaiser developed a window function and a design formula that will usually 
result in a filter length less than those designed by using other window methods.Given a lowpass filter, the passband 

region is from 0 to p  and the stopband  

 

 
Fig.10 the windowing lowpass filter components 

 
 

region from s to   as described in the following fig 
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Where N controls the transition bandwidth and β controls the sidelobe attenuation. 
The resultant formula by Kaiser: 
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      (3.10)  
These formulas can be used to estimate the 
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values of N and β. To design a filter of minimal filter length while satisfying a given set of specification may require 
a few iterations to fine-tune the values of N. 
Fig.11 Kaiser Window for different orders (order 1 to 6) .The transition bandwidth decreases with the increasing of 

the order 
2.9 Matlab and Fir Raised Cosine 

The function firrcos can be used to design a raised cosine FIR filter and a square root FIR raised cosine in 
MATLAB  
B=firrcos (N,fc,TW,Fs)   or 
B=firrcos (N,fc,TW,Fs,'sqrt') 
With a rolloff factor: 
B=firrcos (N,fc,Fs,'rolloff')  or 
B=firrcos (N,fc,Fs,'rolloff','sqrt')   
With a delay 
B=firrcos (N,fc,TW,Fs,'normal',delay)  or 
B=firrcos (N,fc,TW,Fs,'sqrt',delay) 
With a rolloff factor and delay 
B=firrcos (N,fc,Fs,'rolloff','normal',delay)  or 
B=firrcos (N,fc,Fs,'rolloff','sqrt',delay) 
Where: 
N   is the filter Order (returns a length N+1 tabs) 
fc  is the passband edge frequency 
TW   transition bandwidth (Fstop – Fpass) 
Fs   is the sampling frequency (= 2 Nyquist Frequency) 
delay         is a variable integer delay[5] 
 

 
Fig.12 A Raised Cosine filter (order 20) with a cutoff frequency off 0.5 (normalized) and a roll-off factor R=0.1, 
R=0.3, R=0.5, R=0.7, and R=0.9 by using GUI. 
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Fig. 13 Magnitude Response 
 
Different roll-off factors (R=0.1, R=0.3, R=0.5, R=0.7, R=0.9) with the same order (order=20) and cutoff frequency 
(fc = 0.5).The figure shows the squared magnitude and the different unity gain regions and the attenuation regions 
and the raised cosine regions and it easily to figure out the relation between them and the rolloff factor. 
 
3. Infinite Impulse Response(Iir) Digital Filter 
3.1 Designing An IIR (Infinite Impulse Response) Filters   

IIR (Infinite Impulse Response) or Recursive filters are signal processing filters which re-use one or more 
output(s) of the filter as inputs. This feedback results in an unending impulse response characterized by 
exponentially growing, decaying, or sinusoidal signal output components. 
In digital IIR filters, the output feedback is immediately apparent in the equations defining the output. Note that 
unlike with FIR filters, in designing IIR filters it is necessary to carefully consider "time zero" case in which the 
outputs of the filter have not yet been clearly defined. 
To start a theoretical IIR we start with the difference equation which defines how the input signal is related to the 
output signal 

0 1 1 2( ) ( ) ( 1) ( ) ( 1) ( 2) ( )p Qy n b x n b x n b x n P y n y n y n Q                  (2.3) 

where P is the forward filter order, ib are the forward filter coefficients, Q is the feedback filter order, ia  are the 

feedback filter coefficients, x(n) is the input signal and y(n) is the output signal. A more condense form of the 
difference equation is 

0 1

( ) ( ) ( )
QP

i k
i k

y n b x n i y n k
 

           (2.4) 

To find the impulse response we set 

( ) ( )x n n           (2.5) 

Where ( )n is the delta impulse. The impulse response for an IIR filter follows as 

0 1

( ) ( ) ( )
QP

i k
i k

h n b n i h n k 
 

           (2.6) 

The Z-transform of the impulse response yields the transfer function of the IIR filter 

 ( ) ( ) ( ) n

n

H z Z h n h n z






          (2.7) 



                 )9(4;121New York Science Journal 20 http://www.sciencepub.net/newyork         NYJ  

 

 76

We note that Z {δ (n)} = 1 then with the definition of the impulse response and the time shift property of the Z-
transform follows 

0 1

( ) ( )
QP

i k
i k

i k

H z b z z H Z 

 

          (2.8) 

Isolating H(z) on the left hand side leads to the desired format of the transfer function 

0

1

( )
1

P i
ii

Q k
kk

b z
H z
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        (2.9) 

The transfer function allows us to judge whether or not a system is bounded-input, bounded-output (BIBO) stable. 
To be specific, the BIBO stability criteria require all poles of the transfer function to have an absolute value smaller 
than one. In other words, all poles must be located within a unit circle in the z-plane. To find the poles of the transfer 

function we have to extend it with 

O

O

z

z  (or mathematically multiply by

O

O

z

z ) 
Where O = max (P, Q) and arrive at 

0

1

( )

P O i
ii

QO O k
kk

b z
H z

z z













         (2.10) 

The poles of the IIR filter transfer function are the zeros of the denominator polynomial of the transfer function. The 
poles are evaluated as 

1

0
Q

O O k
k

k

z z 



           

 
 
 (2.11) 

Clearly, if 0k  then the poles are not located on the origin of the z-plane. This is in contrast to the FIR filter 

where all poles are located on the origin of z-plane. 
The primary advantage of IIR filters over FIR filters is that they typically meet a given set of specifications 

with a much lower filter order than a corresponding FIR filter. Although IIR filters have nonlinear phase. 
Data processing within MATLAB is commonly performed off-line, That is, the entire data sequence is 

available before filtering. This allows for a noncausal, zero-phase filtering approach, which eliminates the nonlinear 
phase distortion of an IIR filter. 

Design of digital IIR filters is heavily dependants on that of their analog counterparts which is because they 
are well studied, and have rich resources, while that, MATLAB toolbox provide some new function which are 
designed directly at the Z-domain and they have special features. 
 
3.1 Iir Butterworth Filter  
The Butterworth filter is the most known theoretical IIR filter .it is designed to have a frequency response which is 
as flat as mathematically possible in the passband.  
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Figure.14 Butterworth of order 4, clearly it has a flat passband (no ripples) and rolls off towards zero in the 
stopband 
 
3.3 Butterworth Characteristic And Response 

The frequency response of the Butterworth filter is maximally flat (has no ripples) in the passband, and 
rolls off towards zero in the stopband. When viewed on a logarithmic scale the response linearly slopes towards 
negative infinity. The Butterworth is the only filter that maintains this same shape for higher orders (but with a 
sharper slope in the stopband).Compared with a Chebyshev Type I/Type II filter or an elliptic filter, the Butterworth 
filter has a slower roll-off, and thus will require a higher order to implement a particular stopband specification. 
However, Butterworth filter will have a more linear phase response in the passband than the Chebyshev Type I or II 
and elliptic filters. 

 

 
Figure. 15 Lowpass Butterworth with different orders (order 1 to 5), as the order increased the transition 
width slowly reduced, and thus it require a high order to meet a specific requirement, 

 
3.4 Matlab And Maxflat 

MATLAB toolbox provide a generalized low pass butterworth function as follows 
 [B,A] = maxflat (num,den,fc) 
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Where 
num  is the numerator order 
den  is the denominator Order 

fc  is the cut-off frequency at which the filter's magnitude response is equal to 1
2

 

Note : butter(N,Wn) = maxflat(N,N,Wn) except in the zeros and poles 
( example for N=20) 
 

 
Figure.16 Magnitude response for a Butterworth filter and a maxflat filter, the two filter gives the same 
response shape  

 
 
Figure.17 Pole/Zero response for a Butterworth filter and a maxflat filter,the two filter gives the same 
response shape but with some difference in the pole/zero plane 
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3.5 Matlab And Chebyshev 
MATLAB provide two Chebyshev functions cheby1 and cheby2 and they contains all design needs. 

For Lowpass Chebyshev: 
[B,A] = cheby1(N,Apass,fc) 
[B,A] = cheby2(N,Astop,fc) 
 
For Highpass Chebyshev: 
[B,A] = cheby1(N,Apass,fc,'high') 
[B,A] = cheby2(N,Astop,fc,'high') 
 
For passband Chebyshev 
[B,A] = cheby1(N,Apass,[fc1,fc2]) 
[B,A] = cheby2(N,Astop,[fc1,fc2]) 
 
For stopband Chebyshev 
[B,A] = cheby1(N,Apass,[fc1,fc2],'stop') 
[B,A] = cheby2(N,Astop,[fc1,fc2],'stop') 
 
Where 
N  is the filter order 
fc  is the cutoff frequency (0 < fc < 1) 
fc1 and fc2  is the bandpass and stopband frequencies for the Bandpass or stopband filters 
Apass  is the passband attenuation (dB) 
Astop  is the stopband attenuation (dB)[5] 
 

 
Fig18. Magnitude Response 
 
Chebyshev type I and Chebyshev type II with the same order (order 4) and same cutoff frequency (fc=0.4 
normalized) the first one have some ripples in the passband but also smooth at the stopband ,the second filter is the 
opposite, and it is clear that Chebyshev type II has a slower transition off than the Chebyshev type I. 

 
3.6 Matlab And Iir Elliptic Filter 

 Lowpass Elliptical filter: 
[B,A] = ellip(N,Apass,Astop,fc) 

 For Highpass Elliptical filter: 
[B,A] = ellip(N,Apass,Astop,fc,'high') 

 For passband Elliptical filter: 
[B,A] = ellip(N,Apass,Astop,[fc1,fc2]) 

 For stopband Elliptical filter: 
[B,A] = ellip(N,Apass,Astop,[fc1,fc2],'stop') 
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Where 
N  is the filter order 
fc  is the cutoff frequency (0 < fc < 1) 
fc1 and fc2 is the bandpass and stopband frequencies for the Bandpass or Stopband filters 
Apass  is the passband attenuation (dB) 
Astop  is the stopband attenuation (dB) [5] 
 

 
 
Fig.19 An elliptical filter of order 4 ,it has a sharp transition bandwidth but with some ripples in the 
passband and stopband  
 
3.7 Comparison With Other Linear Filters 

The next figure contains the last four IIR filters magnitude response, the four filters designed with the same 
order and cutoff frequency. 

Fig.20 Magnitude Response 

Figure (20) Four filters for the same order and cutoff frequency: Butterworth, Chebyshev type I ,Chebyshev type II 
and a elliptical filter, The elliptic filter has a sharper transition band than all the others, but also it has ripples on the 
whole bandwidth. The butterworth has a flat passband, and the two chebyshevs are in between. 
 
3.8 Matlab And Least Pth-Norm Or Constraines Least Pth-Norm 

 For the least -Pth norm (The function iirlpnorm) 
 
 
 
 
 

 [B, A]= iirlpnorm (num, den, fvector, edgesvector, mvector) or 
 [B, A]= iirlpnorm (num, den, fvector, edgesvector, mvector, wvector) or 
 [B, A]= iirlpnorm (num, den, fvector, edgesvector, mvector, wvector, radius, pthnorm) 
 [B, A]= iirlpnorm (num, den, fvector, edgesvector, mvector, wvector, radius, pthnorm, DENS)  
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For the Constrained Least -Pth norm (The function iirlpnormc) 
 
 
 
 
 
 
 
 
 
Where: 
num   is the filter numerator order  
den   is the filter denominator order  
fvector  is the best approximation to the desired frequency response  
mvector  is the filter magnitude vector in the least -Pth sense. 
edgesvector specifies the band-edge frequency points where a frequency band starts/stops and a don't care 

regions stops/starts. 
wvector  is the weight error vector  
Pthnorm  is a two-element vector [Pmin Pmax] allows for the specification of the minimum and maximum 

values of P used in the least -Pth algorithm 
DENS   specifies the grid density used in the optimization 
radius    is the maximum pole radius [5] 
 

 
Fig.21 The two Lowpass filters with following specifications 
 
 
 
[B1,A1]=iirlpnorm(10,2,[0,0.45,0.5,1],[0,0.45,0.5,1],[1,1,0,0],[1,1,10,10]);  
[B2,A2]=iirlpnormc(10,2,[0,0.45,0.5,1],[0,0.45,0.5,1],[1,1,0,0],[1,1,10,10],0.9); 
are designed with iirlpnorm (Least Pth-norm) and iirlpnormc (constrained Least Pth-norm by using GUI. 

 
 
 
 
 
 

[B, A] = iirlpnormc (num, den, fvector, edgesvector, mvector) or 

[B, A]= iirlpnorm (num, den, fvector, edgesvector, mvector, wvector) or 
[B, A]= iirlpnorm (num, den, fvector, edgesvector, mvector, wvector,pthnorm)or 
[B, A]= iirlpnorm (num, den, fvector, edgesvector, mvector, wvector,pthnorm,  
     DENS)  
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Fig.22 Magnitude Response 

 

 
Fig.23 Pole/Zero Plot 
 

The figure shows the pole/zero plot for the 
iirlpnorm (Least Pth-norm) and iirlpnormc 
(Constrained Least Pth-norm). The un-constrained 
design cause a zero outside the unit circle and the 
constrained design prevents this problem. 
  
Conclusion 

The ability of using this advanced computer 
aided design methods were demonstrated by a 
specially developed GUI program for an accurate 
design to choose the best kind suitable digital filters 
using MATLAB techniques. 

Introduction and application of recursive 
and non-recursive filters were demonstrated and have 
been introduced to the design of inter- digitized 
computer. A Typical real examples were given and a 
demonstrated tests were achieved for many different 
and wide specifications of digital filter design. 
Finally, the main objective of this program was to 

help and guide the experienced and the non-
experienced user in order to achieve an optimum 
design of digital filters. 
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