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Abstract: Digital filtering occupies an extremely important position in the digital signal processing [1]. This paper
introduces the new concept of using Matlab with Graphical User Interface in designing FIR (Finite Impulse
Response) digital filters and IIR (Infinite Impulse Response) digital filters. Matlab, which is a high-performance
numerical calculation program and provides a powerful function of graphical display. Matlab is widely used in
engineering calculation, numerical analysis, etc. [2]. This paper introduces the definition and basic principles of FIR
& IIR digital filters. In this paper we have designed Graphical User Interface consists of almost all types of IIR
filters and FIR filters. User simply have to insert filter specifications on GUI and get magnitude response, phase
response, etc. of required filter.

[Adnan Affandi, Abdullah M. Dobaie & Mubashshir Husain. Digital Filters Design using Matlab with Graphical
User Interface (GUI) N Y Sci J 2021;14(9):68-83] ISSN 1554-0200 (print); ISSN 2375-723X (online)
http://www.sciencepub.net/newyork. 8. doi:10.7537/marsnys140921.08.

Keywords: FIR digital filter, IIR digital filters Matlab, Graphical User Interface, etc.

1. Introduction 2. Designing of Fir Digital Filters

A fundamental aspect of signal processing is 2.1 Designing an Fir (Finite Impulse Response)
filtering. Filtering involves the manipulation of the Filters
spectrum of a signal by passing or blocking certain FIR filters are one of two primary types of
part of the spectrum, depending on the frequency of digital filters used in Digital Signal Processing (DSP)
those parts. Filters are designed according to what applications, the impulse response is "finite" because
kind of manipulation of the signal is required for a there is no feedback in the filter as in the second type
particular application. Digital filters are implemented of filters (It will explained in the IIR filters part).A
using three fundamental building blocks: an adder, a useful designing model for the design specifications in
multiplier, and a delay element and they represent the FIR design is to think of each specification as one of the
Capacitor, Inductors and Resistance in the analog angles in a triangle as shown figl.
filtering. order

With these basic building blocks, the two
different filter structures can easily be implemented.
These two structures are Infinite Impulse Response
(ITIR) and Finite Impulse Response (FIR), depending
on the form of the system’s response to a unit pulse
input. IIR filters are commonly implemented using a

feedback (recursive) structure, while FIR filters T.width Ripple
usually require no feedback (non-recursive). The
design process of a digital filter is long and some way Fig.1 FIR triangle model
is a kind of routine if done by hand. With the aid of The model in Fig 2.2 is used to understand the
computer programs performing filter design degrees of freedom available when considering a filter
algorithms, designing and optimizing filters can be specification. Because the sum of the angles is fixed, we
done relatively quickly. can at most select the values of two of the specifications.
A filter with linear phase response is The third specification will be determined by the design
desirable in many applications such as image algorithm utilized. Moreover, as with the angles in a
processing and data transmission. One of the triangle, if we make one of the specifications
desirable characteristics of FIR filters is that they can larger/smaller, it will impact one or both of the other
be designed very easily to have linear phase. specifications.
2.2 Optimal Fir Designs with Fixed Transition
Width and Filter Order
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Truncated-and-windowed impulse response
design algorithm is very simple and reliable; it is not
optimal in any sense. The designs are generally
inferior to one of the order or the transition width or
the pass band/stop band ripples, the exceeded value
of any of them is typically undesirable in the

Optimal  designs are computed by
minimizing some measure of the deviation between
the filter to be designed and the ideal filter. The most
common optimal FIR design algorithms are based on
fixing the transition width and the order of the filter.
The deviation from the ideal response is measured
only by the passband /stopband ripples. This
deviation or error can be expressed mathematically as

E(a)):Ha(a))_HLP(ejw) weQ

@.1)
Where H ,(w)is the zero-phase response of the

designed filter and w = [0, @, ][ ®,,,, ,1] - It is still

necessary to define a measure to determine “the size”
of E(w)(the quantity we want to minimize as a

result of the optimization)

The most often used measures are the L-
norm (Lo or L2) .In order to allow for different peak
ripples in the passband and stopband, a weighting
function W (w) is usually introduced

Ey (&)=W (&) H(&)~H,, (") ]

(2.2)
The most famous two filter kinds in this field are the
Equiripple and the Least Square Filter and they will
described later

weld

Order

T.wWidth Ripple

Fig.2 FIR triangle model for fixed transition width and
filter order

2.3 Optimal Fir Designs With Fixed
Transition Width And Peak Passband/
Stopband Ripple

Fixed Transition width and
passband/stopband ripple allow us to reach an
optimum filter with a minimum number of tabs
(order). The equations are even more dramatic when
the passband ripple and stopband ripple
specifications are different (unlike the equiripple
filters). The reason is that the truncated-and
windowed impulse response methods always give a
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result with approximately the same pass band and
stop band peak ripple. Therefore, always the stricter
peak ripple will cause in exceeding (possibly
significantly) all other ripple constraints at the
expense of unnecessarily large filter order. To
illustrate this, we turn to a different equiripple design
in which both the peak ripples and the transition
width are fixed. In minimum-phase designs with
fixed transition width and peak passband/stopband
ripple the same procedure can be used to design
minimum-phase filters with fixed transition width
and peak passband/ stopband ripple. In this case,
rather than obtaining smaller ripples, the benefit is
meeting the same transition width and peak passband/
stopband ripples with a reduced filter order

Ordrr

N
“

/N

T.whidth

Ripplc

Fig 3. FIR triangle model for fixed transition width and
peak passband/stopband ripple

2.4 Optimal Fir Designs With Fixed Peak Ripple
And Filter Order

Fixing the filter order and the peak ripple
values should result in a smaller transition width. In
minimum-phase designs with fixed peak ripple and
filter order, once again, if linear-phase is not a
requirement, a minimum-phase filter can be designed
that is better in some sense to a comparable linear
phase filter. In this case, for the same filter order and
peak ripple value, a minimum-phase design results in
a smaller transition width than a linear-phase design.

Order

T.width Eipple

Fig. 4 FIR triangle model for fixed peak ripple and filter
order

2.5 Designing Optimal Fir Equiripple Filters With

Fixed Transition Width And Filter Order By

Using Graphical User Interface

e This linear phase filter can be designed with the
function firpm or in minimax concept by
firgr.
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B=firpm (N, fvector, mvector) or B=firpm (N, fvector, mvector, wvector,
B=firpm (N, fvector, mvector, wvector) or 'differentiator') or
B=firgr (N, fvector, mvector) or B=firgr (N, fvector, mvector, 'differentiator’)
B=firgr (N, fvector, mvector, wvector) or
e And for Hilbert Transform that have odd B=firgr (N, fvector, mvector, wvector,
symmetry 'differentiator’)
B=firpm (N, fvector, mvector, 'Hilbert') or
B=firpm (N, fvector, mvector, wvector, Where
'Hilbert") or N is the filter Order (returns a length N+1 tabs)
B=firgr (N, fvector, mvector, Hilbert'") or fvector is the best approximation to the desired
B=firgr (N, fvector, mvector, wvector, frequency response
'Hilbert') mvector is the filter magnitude vector in the least -
e And for the Differentiator with odd symmetry Pth sense.
B=firpm (N, fvector, mvector, 'differentiator') wvector is the weight error vector [5]

or

FPhase Response
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Fig.5 Using Graphical User Interface for designing Hilbert bandpass filter (Fpass=0.1, Fstop=0.9 , Order=30)
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Felangn Lude Resgeonse

Hommalizsd Frequeancy =% redisampbed

Fig.6 Showing Magnitude Response of Hilbert bandpass filter (Fpass=0.1 , Fstop=0.9 & Order=30).
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Fig. 7 Phase response of a bandpass filter

2.6 Fir Least-Squares and Fir Constrained Least-Squares Filters
Equiripple designs may not be desirable if we want to minimize the energy of the error (between ideal and
actual filter) in the passband /stopband. Consequently, if we want to reduce the energy of a signal as much as
possible in a certain frequency band, least-squares designs are preferable.
2.7 Designing Optimal Fir Least Square Filters With Fixed Transition Width and Filter Order
This filter can be designed with the function firls as follows
B=firls (N, fvector, mvector) or
B=firls (N, fvector, mvector, bwvector)

And for Hilbert Transform that have odd symmetry
B= firls (N, fvector, mvector, 'Hilbert') or
B= firls (N, fvector, mvector, bwvector, 'Hilbert")

And for the Differentiator with odd symmetry

B= firls (N, fvector, mvector, 'differentiator') or

B= firls (N, fvector, mvector, bwvector, 'differentiator')
Where
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N is the filter Order (returns a length N+1 tabs)

fvector s the best approximation to the desired frequency response
mvector is the filter magnitude vector in the least -Pth sense.
bwvector is the weight per band vector [5]
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Fig.8 Designing A lowpass Least Square filter with order=20 and band edges at f|, =0.4 and f, =0.5

(normalized) by using GUIL.
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Fig.9 A lowpass Least Square filter with order=20 and band edges at f =04 and f =053 (normalized),

compared with an Equiripple filter with the same specifications
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An equiripple filter designed with firpm exhibits equiripple behavior. And a least square filter designed
with firls filter has a better response over most of the passband and stopband, but at the band edges (f= 0.4 and =
0.5), the response is further away from the ideal than the firpm filter. This shows that the firpm filter's maximum
error over the passband and stopband is smaller and, in fact, it is the smallest possible for this band edge

configuration and filter length.

2.8 Fir Windowing (Kaiser Window Design Technique)
May be it is quite important to describe at least one of the window kind and we will take the Kaiser window

as an example.The main problem with the window design method is that it is very difficult to trade-off between
attenuation and transition bandwidth. Kaiser developed a window function and a design formula that will usually
result in a filter length less than those designed by using other window methods.Given a lowpass filter, the passband

region is from 0 to @, and the stopband

Magnitude Response

n

N:B']: P(Eiiser v-.-'il‘:u:h:w-a' Wiih cliffen:ént n:urdeirs

Magnitude

0.7
Mormalized Fregquency (=z rad/zample}

Fig.10 the windowing lowpass filter components

region from @), to 7z as described in the following fig

Aw =g —w, (3.6)
A =-20log, § (3.7)

To(By1-0-217)
K(n)= Jfor 0<n<N (3.8)

1, ()
Where N controls the transition bandwidth and B controls the sidelobe attenuation.
The resultant formula by Kaiser:

A-8
= (3.9)
2.285Aw
(3.10)
These formulas can be used to estimate the
0.1102(4 —8.7) A >50
L =:0.5842(4 —21)"* +0.07886(4 —21) 21<4 <50

0 4 <31
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values of N and . To design a filter of minimal filter length while satisfying a given set of specification may require
a few iterations to fine-tune the values of N.
Fig.11 Kaiser Window for different orders (order 1 to 6) .The transition bandwidth decreases with the increasing of
the order
2.9 Matlab and Fir Raised Cosine

The function firrcos can be used to design a raised cosine FIR filter and a square root FIR raised cosine in
MATLAB
B=firrcos (N,fc,TW,Fs) or
B=firrcos (N,fc,TW,Fs,'sqrt")
With a rolloff factor:
B=firrcos (N,fc,Fs,'rolloff') or
B=firrcos (N,fc,Fs,'rolloff,'sqrt")
With a delay
B=firrcos (N,fc,TW,Fs,'normal',delay) or
B=firrcos (N,fc,TW,Fs,'sqrt',delay)
With a rolloff factor and delay
B=firrcos (N,fc,Fs,'rolloff,'normal',delay) or
B=firrcos (N,fc,Fs,'rolloff,'sqrt',delay)

Where:
N is the filter Order (returns a length N+1 tabs)
fc is the passband edge frequency
™ transition bandwidth (Fstop — Fpass)
Fs is the sampling frequency (= 2 Nyquist Frequency)
delay is a variable integer delay[5]
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Fig.12 A Raised Cosine filter (order 20) with a cutoff frequency off 0.5 (normalized) and a roll-off factor R=0.1,
R=0.3, R=0.5, R=0.7, and R=0.9 by using GUI.
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Magnitude Response (squared)
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Fig. 13 Magnitude Response

Different roll-off factors (R=0.1, R=0.3, R=0.5, R=0.7, R=0.9) with the same order (order=20) and cutoff frequency
(fc = 0.5).The figure shows the squared magnitude and the different unity gain regions and the attenuation regions
and the raised cosine regions and it easily to figure out the relation between them and the rolloff factor.

3. Infinite Impulse Response(lir) Digital Filter
3.1 Designing An IIR (Infinite Impulse Response) Filters

IIR (Infinite Impulse Response) or Recursive filters are signal processing filters which re-use one or more
output(s) of the filter as inputs. This feedback results in an unending impulse response characterized by
exponentially growing, decaying, or sinusoidal signal output components.
In digital IR filters, the output feedback is immediately apparent in the equations defining the output. Note that
unlike with FIR filters, in designing IIR filters it is necessary to carefully consider "time zero" case in which the
outputs of the filter have not yet been clearly defined.
To start a theoretical IIR we start with the difference equation which defines how the input signal is related to the
output signal

y(n)=bx (n)+bx(n—-1)+-+bx(n-P)+ay(n-D+ayn-2)+-+a,y(n-0) (2.3)
where P is the forward filter order, bl. are the forward filter coefficients, Q is the feedback filter order,a; are the

feedback filter coefficients, x(n) is the input signal and y(n) is the output signal. A more condense form of the
difference equation is

P 0
y()=Ybx(n-i)+> a,y(n—k) (2.4)
i=0 k=1
To find the impulse response we set
x(n)=90(n) (2.5)
Where 0(n) is the delta impulse. The impulse response for an IIR filter follows as
P Q
h(n)=>b,6(n—i)+> a,h(n—k) (2.6)
i=0 k=1

The Z-transform of the impulse response yields the transfer function of the IIR filter

H()=Z (h(m)} =S h(n)z @)

n=—x0

75



http://www.sciencepub.net/newyork New York Science Journal 2021;14(9)

We note that Z {6 (n)} = I then with the definition of the impulse response and the time shift property of the Z-
transform follows

P o
H(z)=Ybz"'+> az"H(Z) (2.8)
i=0 k=1

Isolating H(z) on the left hand side leads to the desired format of the transfer function

H(z) S 2.9)
z)= = :
1- Zle o,z -k

The transfer function allows us to judge whether or not a system is bounded-input, bounded-output (BIBO) stable.
To be specific, the BIBO stability criteria require all poles of the transfer function to have an absolute value smaller
than one. In other words, all poles must be located within a unit circle in the z-plane. To find the poles of the transfer

z? z?

0 0
function we have to extend it with Z  (or mathematically multiply by Z )
Where O = max (P, Q) and arrive at

ZP bl_ZOﬂ'
H(z)= L=

10) 0 0-k
z P 7%

(2.10)
The poles of the IIR filter transfer function are the zeros of the denominator polynomial of the transfer function. The
poles are evaluated as

0
20 -3 0,20 =0
k=1

(2.11)
Clearly, if &, # 0 then the poles are not located on the origin of the z-plane. This is in contrast to the FIR filter

where all poles are located on the origin of z-plane.

The primary advantage of IIR filters over FIR filters is that they typically meet a given set of specifications
with a much lower filter order than a corresponding FIR filter. Although IIR filters have nonlinear phase.

Data processing within MATLAB is commonly performed off-line, That is, the entire data sequence is
available before filtering. This allows for a noncausal, zero-phase filtering approach, which eliminates the nonlinear
phase distortion of an IIR filter.

Design of digital IIR filters is heavily dependants on that of their analog counterparts which is because they
are well studied, and have rich resources, while that, MATLAB toolbox provide some new function which are
designed directly at the Z-domain and they have special features.

3.1 Iir Butterworth Filter

The Butterworth filter is the most known theoretical IR filter .it is designed to have a frequency response which is
as flat as mathematically possible in the passband.
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Magnitude Response
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Figure.14 Butterworth of order 4, clearly it has a flat passband (no ripples) and rolls off towards zero in the
stopband

3.3 Butterworth Characteristic And Response

The frequency response of the Butterworth filter is maximally flat (has no ripples) in the passband, and
rolls off towards zero in the stopband. When viewed on a logarithmic scale the response linearly slopes towards
negative infinity. The Butterworth is the only filter that maintains this same shape for higher orders (but with a
sharper slope in the stopband).Compared with a Chebyshev Type I/Type 11 filter or an elliptic filter, the Butterworth
filter has a slower roll-off, and thus will require a higher order to implement a particular stopband specification.
However, Butterworth filter will have a more linear phase response in the passband than the Chebyshev Type I or II
and elliptic filters.

Magnitude Response
1.4 T T T T T T T T

T
Butterworth of order 4

htagnituice

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mormalized Freguency (== radfsample)
Figure. 15 Lowpass Butterworth with different orders (order 1 to 5), as the order increased the transition

width slowly reduced, and thus it require a high order to meet a specific requirement,
3.4 Matlab And Maxflat

MATLAB toolbox provide a generalized low pass butterworth function as follows
[B,A] = maxflat (num,den,fc)
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Where

num is the numerator order

den is the denominator Order

fc is the cut-off frequency at which the filter's magnitude response is equal to % 0

Note : butter(N,Wn) = maxflat(N,N,Wn) except in the zeros and poles
(- example for N=20)

Magnitude Response
1.4 ™ -T T T ™ T T T T

Butterworth
< G SRR (IR bceccabecccaadocoaaod — MaxFlat

Magnilude

MNermalized Frequency (== radfsample)

Figure.16 Magnitude response for a Butterworth filter and a maxflat filter, the two filter gives the same
response shape
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Figure.17 Pole/Zero response for a Butterworth filter and a maxflat filter,the two filter gives the same
response shape but with some difference in the pole/zero plane
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3.5 Matlab And Chebyshev
MATLAB provide two Chebyshev functions chebyl and cheby2 and they contains all design needs.
For Lowpass Chebyshev:
[B,A] = chebyl(N,Apass,fc)
[B,A] = cheby2(N,Astop,fc)

For Highpass Chebyshev:
[B,A] = chebyl(N,Apass,fc,'high")
[B,A] = cheby2(N,Astop,fc,'high")

For passband Chebyshev
[B,A] = chebyl(N,Apass,[fcl,fc2])
[B,A] = cheby2(N,Astop,[fc1,fc2])

For stopband Chebyshev
[B,A] = chebyl(N,Apass,[fcl,fc2],'stop")
[B,A] = cheby2(N,Astop,[fc1,fc2],'stop")

Where
N is the filter order
fc is the cutoff frequency (0 < fc < 1)
fcl and fc2 is the bandpass and stopband frequencies for the Bandpass or stopband filters
Apass is the passband attenuation (dB)
Astop is the stopband attenuation (dB)[5]
e Magnitude Response
e CRERRR ! e SR o S RS | S Rt e | SRt e ot S
g
=
4

1
0.1 0.2 0.3 0.4 D.5

Hormalized Frequency (== rad/sample)

Fig18. Magnitude Response

Chebyshev type I and Chebyshev type II with the same order (order 4) and same cutoff frequency (fc=0.4
normalized) the first one have some ripples in the passband but also smooth at the stopband ,the second filter is the
opposite, and it is clear that Chebyshev type II has a slower transition off than the Chebyshev type I.

3.6 Matlab And Iir Elliptic Filter
e Lowpass Elliptical filter:
[B,A] = ellip(N,Apass,Astop,fc)
e For Highpass Elliptical filter:
[B,A] = ellip(N,Apass,Astop,fc,'high")
e  For passband Elliptical filter:
[B,A] = ellip(N,Apass,Astop,[fcl,fc2])
e For stopband Elliptical filter:
[B,A] = ellip(N,Apass,Astop,[fc1,fc2],'stop")
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Where

N is the filter order

fc is the cutoff frequency (0 <fc < 1)

fcl and fc2 is the bandpass and stopband frequencies for the Bandpass or Stopband filters
Apass is the passband attenuation (dB)

Astop is the stopband attenuation (dB) [5]
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Magnitude Responsa

Fig.19 An elliptical filter
passband and stopband
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of order 4 ,it has a sharp transition bandwidth but with some ripples in the

3.7 Comparison With Other Linear Filters
The next figure contains the last four IIR filters magnitude response, the four filters designed with the same
order and cutoff frequency.
Fig.20 Magnitude Response

Magnitude Response
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Figure (20) Four filters for the same order and cutoff frequency: Butterworth, Chebyshev type I ,Chebyshev type 11
and a elliptical filter, The elliptic filter has a sharper transition band than all the others, but also it has ripples on the
whole bandwidth. The butterworth has a flat passband, and the two chebyshevs are in between.

3.8 Matlab And Least Pth-Norm Or Constraines Least Pth-Norm
e  For the least -Pth norm (The function iirlpnorm)

[B,A
[B, A
[B, A

1=
1=
1=
[B, Al=

iirlpnorm (num, den, fvector, edgesvector, mvector) or

iirlpnorm (num, den, fvector, edgesvector, mvector, wvector) or

iirlpnorm (num, den, fvector, edgesvector, mvector, wvector, radius, pthnorm)
iirlpnorm (num, den, fvector, edgesvector, mvector, wvector, radius, pthnorm, DENS)
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For the Constrained Least -Pth norm (The function iirlpnormc)

[B, A] =iirlpnorme (num, den, fvector, edgesvector, mvector) or
[B, A]=iirlpnorm (num, den, fvector, edgesvector, mvector, wvector) or

[B, Al=iirlpnorm (num, den, fvector, edgesvector, mvector, wvector,pthnorm)or
[B, Al=iirlpnorm (num, den, fvector, edgesvector, mvector, wvector,pthnorm,

DENS)

Where:
num

den

fvector
mvector
edgesvector

wvector is the weight error vector
Pthnorm

is the filter numerator order

is the filter denominator order
is the best approximation to the desired frequency response
is the filter magnitude vector in the least -Pth sense.

specifies the band-edge frequency points where a frequency band starts/stops and a don't care
regions stops/starts.

values of P used in the least -Pth algorithm

DENS
radius

Select a filter tybe and fill all its specifications

(%) Equiripple 1) Linesar Phase j
1) Fixed Order - | | |
O LeastSquare 1) Least Square -
© Windowe 1)Focedt Order - | 1) Barthanwin - |
() Raised Cosine | 1) Raised cosine transtion band d
) Mulirate Fiters m
1) Fixed order (anty) -]
) Least Pth-norm
— Additional
| - -

() Butterworth  Fixed Order ) |

() Maximally Flat

O chebyshey | Tybe| | [Fedomer -]
() Elliptic Mnimum Order  + I

() Least Pth-norm

(%) Constrained Least Pih-norm  [] Max Pole Radius | 0.9

specifies the grid density used in the optimization
is the maximum pole radius [5]

is a two-element vector [Pmin Pmax] allows for the specification of the minimum and maximum

Freguency Vectors Spec.

(%) Low Pass () Pass Band Fregquency Yector I .
() High Pass ) Stop Band Frequency Edges |
Ifferantistc Hilbert Transfort hagnitude Yector |
frial Winda ) Arbitary Magriude [&] Weight Vector | [1,1,10,10)
Iuttl Band | t - : _l [] Fth-norm |
©) Arbitary Group Delay | | Factor |
| Freguency Spec. |
— Apassi A 2 Asto [
() Mormshized  (5) Hz with Myquist Frequency = 100 I ‘ M == —| ) .
Astopt | | Astopz | | Apass
[] Minimum Transition Width i |
Fc Fc1 Fc2
Fixad Transition Width

Fpass | 45 |Fnass1 Fpass2 ]
Fetop | 50 | Fastopt Fstop2 |

| Filter Order |
[ Fixed Order [ Minimosm Order

Order MNum Order 10 Den Order | 2 |

Fig.21 The two Lowpass filters with following specifications

L Weighis |
\Wstopd | Wipass Wistop2 1
Wipass Wistop Wipass2 |

Band weight vector

[ send Function to MATLAE Command Window ]

| Pt the Fiter(s) usir{ “ATLAE Fiter visusization Tool (FvTool) |

[ Al & 3rd Fiter |

[B1,Al]=iirlpnorm(10,2,[0,0.45,0.5,1],[0,0.45,0.5,11,[1,1,0,0],[1,1,10,10]);
[B2,A2]=iirlpnormc(10,2,[0,0.45,0.5,1],[0,0.45,0.5,17,[1,1,0,0],[1,1,10,10],0.9);
are designed with iirlpnorm (Least Pth-norm) and iirlpnormc (constrained Least Pth-norm by using GUI.
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Fig.22 Magnitude Response
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Fig.23 Pole/Zero Plot

The figure shows the pole/zero plot for the
iirlpnorm (Least Pth-norm) and iirlpnormc
(Constrained Least Pth-norm). The un-constrained
design cause a zero outside the unit circle and the
constrained design prevents this problem.

Conclusion

The ability of using this advanced computer
aided design methods were demonstrated by a
specially developed GUI program for an accurate
design to choose the best kind suitable digital filters
using MATLAB techniques.

Introduction and application of recursive
and non-recursive filters were demonstrated and have
been introduced to the design of inter- digitized
computer. A Typical real examples were given and a
demonstrated tests were achieved for many different
and wide specifications of digital filter design.
Finally, the main objective of this program was to
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help and guide the experienced and the non-
experienced user in order to achieve an optimum
design of digital filters.
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