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Abstract: In this paper, the performance of inverted pendulum has been Investigated using neural network control 
theory. The proposed controllers used in this paper are NARMA-L2 with Resilient backpropagation and Levenberg 
Marquardt backpropagation algorithm Controllers. The mathematical model of Inverted Pendulum on a Cart driving 
mechanism have been done successfully. Comparison of an inverted pendulum with NARMA-L2 with Resilient 
backpropagation and Levenberg Marquardt backpropagation algorithm Controllers for a control target deviation of 
an angle from vertical of the inverted pendulum using two input signals (step and random). The simulation result 
shows that the inverted pendulum with NARMA-L2 with Resilient backpropagation Controller to have a small rise 
time, settling time and percentage overshoot in the step response and having a good response in the random response 
too. Finally, the inverted pendulum with NARMA-L2 with Resilient backpropagation Controller shows the best 
performance in the overall simulation result. 
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1. Introduction 
An inverted pendulum is a pendulum that has its 

center of mass above its pivot point. It is unstable and 
without additional help will fall over. It can be 
suspended stably in this inverted position by using a 
control system to monitor the angle of the pole and 
move the pivot point horizontally back under the center 
of mass when it starts to fall over, keeping it balanced. 
The inverted pendulum is a classic problem in 
dynamics and control theory and is used as a 
benchmark for testing control strategies. It is often 
implemented with the pivot point mounted on a cart 
that can move horizontally under control of an 
electronic servo system as shown in the photo; this is 
called a cart and pole apparatus. Most applications 
limit the pendulum to 1 degree of freedom by affixing 
the pole to an axis of rotation. Whereas a normal 
pendulum is stable when hanging downwards, an 
inverted pendulum is inherently unstable, and must be 
actively balanced in order to remain upright; this can 
be done either by applying a torque at the pivot point, 
by moving the pivot point horizontally as part of a 
feedback system, changing the rate of rotation of a 
mass mounted on the pendulum on an axis parallel to 
the pivot axis and thereby generating a net torque on 
the pendulum, or by oscillating the pivot point 
vertically. A simple demonstration of moving the pivot 
point in a feedback system is achieved by balancing an 
upturned broomstick on the end of one's finger. 

A second type of inverted pendulum is a 
tiltmeter for tall structures, which consists of a wire 
anchored to the bottom of the foundation and attached 
to a float in a pool of oil at the top of the structure that 
has devices for measuring movement of the neutral 
position of the float away from its original position. 

A pendulum with its bob hanging directly below 
the support pivot is at a stable equilibrium point; there 
is no torque on the pendulum so it will remain 
motionless, and if displaced from this position will 
experience a restoring torque which returns it toward 
the equilibrium position. A pendulum with its bob in an 
inverted position, supported on a rigid rod directly 
above the pivot, 180° from its stable equilibrium 
position, is at an unstable equilibrium point. At this 
point again there is no torque on the pendulum, but the 
slightest displacement away from this position will 
cause a gravitation torque on the pendulum which will 
accelerate it away from equilibrium, and it will fall 
over. 

In order to stabilize a pendulum in this inverted 
position, a feedback control system can be used, which 
monitors the pendulum's angle and moves the position 
of the pivot point sideways when the pendulum starts 
to fall over, to keep it balanced. The inverted pendulum 
is a classic problem in dynamics and control theory and 
is widely used as a benchmark for testing control 
algorithms (PID controllers, state space representation, 
neural networks, fuzzy control, genetic algorithms, 
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etc.). Variations on this problem include multiple links, 
allowing the motion of the cart to be commanded while 
maintaining the pendulum, and balancing the cart-
pendulum system on a see-saw. The inverted pendulum 
is related to rocket or missile guidance, where the 
center of gravity is located behind the center of drag 
causing aerodynamic instability. The understanding of 
a similar problem can be shown by simple robotics in 
the form of a balancing cart. Balancing an upturned 
broomstick on the end of one's finger is a simple 
demonstration, and the problem is solved by self-
balancing personal transporters such as the Segway PT, 
the self-balancing hoverboard and the self-balancing 
unicycle. 

 
2. Mathematical Model of the Inverted Pendu

lum 
The free body diagram of the inverted pendulum is 
shown in Figure 1 below. 

 
Figure 1: Free body diagrams of the inverted 

pendulum system. 
Summing the forces in the free body diagram of the car
t in the horizontal 
direction, you get the following equation of motion: 

 1Mz Dz Q F     

The force exerted in the horizontal direction due to the 
moment on the pendulum is determined as follows: 
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Component of this force in the direction of Q is 

cosmI   
The component of the centripetal force acting along the 
horizontal axis is as follows: 
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Component of this force in the direction of Q is 
2 sinmI   

Summing the forces in the Free Body Diagram of the 
pendulum in the horizontal direction, you can get an 
equation for Q: 

 2cos sin 2Q mz mI mI        

If you substitute this equation [2] into the first equation 
[1], you get the first equation of motion for this system: 

   2cos sin 3M m z Dz mI mI F         

 
To get the second equation of motion, sum the forces 
perpendicular to the pendulum. This axis is chosen to 
simplify mathematical complexity. Solving the system 
along this axis ends up saving you a lot of algebra. Just 
as the previous equation is obtained, the vertical 
components of those forces are considered here to get 
the following equation: 

 sin cos sin cos 4W Q mg mI mz        

 
To get rid of the P and N terms in the equation above, 
sum the moments around the centroid of the pendulum 
to get the following equation: 

 sin cos 5WI QI I       

Combining these last two equations, you get the second 
dynamic equation: 

 2 sin cosI mI mgI mIz        

The set of equations completely defining the dynamics 
of the inverted pendulum are: 

  2cos sinM m z Dz mI mI F           

 2 sin cosI mI mgI mIz        

These two equations are non-linear and need to be 
linearized for the operating range. Since the pendulum 
is being stabilized at an unstable equilibrium position, 
which is ‘Pi’ radians from the stable equilibrium 
position, this set of equations should be linearized 
about theta = Pi. Assume that theta = Pi + ø, (where ø 
represents a small angle from the vertical upward 
direction). Therefore, cos (theta) = -1, sin (theta) = -ø, 
and (d (theta)/dt) ^2 = 0. 
After linearization the two equations of motion become 
(where u represents the input): 

 M m z Dz mI u      
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 2I mI mgI mIz      

The transfer function of Inverted Pendulum, a DC 
motor, Cart and Cart driving system will be 

 
  3 2

1.3

0.272 0.34 0.8 1

s s

E s s s s




  
 

Where 
E (s) = Error Voltage, and 

 s = Angular Position of the Pendulum. 

The parameters of the system are shown in Table 1 
below 

Table 1 Parameters of the inverted pendulum 

Model parameter symbols 
Symbol’s 
value 

Mass of the Cart  M  1 kg 
Mass of the Pendulum  m  0.3 kg 
Friction of the Cart  D 0.000 N/m/sec 
Length of pendulum to Center 
of Gravity  

L  0.26m 

Moment of Inertia (Pendulum)  I  0.007 kg-m2 
Radius of Pulley,  r 0.04 m 
Force applied to the cart F   
Cart Position Coordinate z  
Pendulum Angle with the 
vertical 

   

 
3. Proposed Controllers Design 
3.1 Design of NARMA-L2 Controller 

The neuro controller described on this phase is cited 
through two different names: response linearization 
control and NARMA-L2 manipulate. It is known as 
comments linearization when the plant shape has a 
specific form (associate form). It is known as 
NARMA-L2 manipulate while the fortification mold 
may be approximated by using the same form. The 
vital principle of this type of control is to convert 
nonlinear design system into linear dynamics with the 
aid of cancelling the nonlinearities. This phase starts 
off evolved with the aid of submitting the associate 
system form and presentation how you may use a 
neural community to become aware of this model. 
Then it describes how the identified neural network 
model may be used to broaden a controller. 

3.1.1 Identification of the NARMA-L2 
Model:  

The first step in the use of feedback linearization (or 
NARMA-L2) manipulate is to identify the design to be 
controlled. You train a neural network to represent the 
forward dynamics of the system. 

 
The first step is to pick out a styles association to use. One standard pattern this is used to symbolize fashionable 
discrete-time nonlinear system is the nonlinear autoregressive-moving average (NARMA) model: 

               , 1 ,..., 1 , , 1 ,...., 1 6y k d N y k y k y k n u k u k u k n           

 Where u(k) is the system input, and y(k) is the system output. For the identification section, you can teach a neural 
network to approximate the nonlinear function N. If you want the system output to follow some reference trajectory 
y (k + d) = yr (k + d) the subsequent step is to expand a nonlinear controller of the form: 

               , 1 ,..., 1 , , 1 ,...., 1 7ru k G y k y k y k n y k d u k u k m           

The trouble with the usage of this controller is that in case you need to teach a neural network to create the 
characteristic G to minimize mean square blunders, you need to apply dynamic returned propagation. This can be 
pretty sluggish. One answer is to apply approximate models to symbolize the system. The controller used on this 
section is based totally at the NARMA-L2 approximate model:  

 
   

     

     

   
   

, 1 ,.., , 1 ,.., 1 ,
ˆ 8

1 , 1 ,.., 1 1 ,.., 1

y k y k y k y k y k n
y k d f g u k

y k n u k u k m u k u k m

      
     

             
 

This model is in associate shape, wherein the next controller input u(k) is not contained in the nonlinearity. The gain 
of this form is that you could resolve for the control input that causes the system output to comply with the reference 
y (k + d) = yr (k + d). The resulting controller would have the form 

 
            

         
 

, 1 ,..., 1 , 1 ,...., 1
9

, 1 ,..., 1 , 1 ,...., 1

ry k d f y k y k y k n u k u k n
u k

g y k y k y k n u k u k n

         
       

 

Using this equation immediately can motive awareness problems, due to the fact you ought to determine the control 
input u(k) primarily based on the output at the same time, y(k). So, rather, use the model 
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 
     

   

   

     
   
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1 10

1 ,.., 1 1 , 1 ,.., 1

y k y k y k n y k y k y
y k d f g u k

u k u k m k n u k u k m
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      

             
 
Where d ≥ 2. Figure 2 shows the structure of a neural network representation 

 
Figure 2. The structure of a neural network representation. 

Using the NARMA-L2 model, you can obtain the controller 

 
            

         
 

, 1 ,..., 1 , ,...., 1
1 11

, 1 ,..., 1 , ,...., 1

ry k d f y k y k y k n u k u k n
u k

g y k y k y k n u k u k n

         
      

 

Which is realizable for d ≥ 2. Figure 3 shows the block diagram of the NARMA-L2 controller. 

 
Figure 3. Block diagram of the NARMA-L2 controller 

 
This controller can be implemented with the formerly diagnosed NARMA-L2 plant model, as shown in Figure 4 
below. 
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Figure 4. Previously identified NARMA-L2 plant model 

Table 2 illustrates the network architecture, training data and training parameters of the proposed controllers. 
Table 2 Neural network Parameters 

 
Network Architecture 

Size of hidden layer 6 Delayed plant input 2 

Sample interval(sec) 1 Delayed plant output 3 

Training Data 

Training sample 100 Maximum Plant output 3 

Maximum Plant input 1 Minimum Plant output 1 

Minimum Plant input 1 Max interval value (sec) 3 

Min interval value (sec) 1.5 

Training Parameters 

Training Epochs 100 

 
3.2 Levenberg-Marquardt Algorithm 

Like the quasi-Newton methods, the Levenberg-
Marquardt algorithm was designed to approach second-
order training speed without having to compute the 
Hessian matrix. When the performance function has the 
form of a sum of squares (as is typical in training 
feedforward networks), then the Hessian matrix can be 
approximated as 

 12TH J J  

and the gradient can be computed as 

 13Tg J e  

where J is the Jacobian matrix that contains first 
derivatives of the network errors with respect to the 
weights and biases, and e is a vector of network errors. 
The Jacobian matrix can be computed through a 
standard backpropagation technique that is much less 
complex than computing the Hessian matrix. 
The Levenberg-Marquardt algorithm uses this 

approximation to the Hessian matrix in the following 
Newton-like update: 

 
1

1 14T T
k kx x J J I J e




      

When the scalar µ is zero, this is just Newton's method, 
using the approximate Hessian matrix. When µ is large, 
this becomes gradient descent with a small step size. 
Newton's method is faster and more accurate near an 
error minimum, so the aim is to shift toward Newton's 
method as quickly as possible. Thus, µ is decreased 
after each successful step (reduction in performance 
function) and is increased only when a tentative step 
would increase the performance function. In this way, 
the performance function is always reduced at each 
iteration of the algorithm.  

3.3 Resilient Backpropagation Algorithm 
Multilayer networks typically use sigmoid transfer 
functions in the hidden layers. These functions are 
often called "squashing" functions, because they 
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compress an infinite input range into a finite output 
range. Sigmoid functions are characterized by the fact 
that their slopes must approach zero as the input gets 
large. This causes a problem when you use steepest 
descent to train a multilayer network with sigmoid 
functions, because the gradient can have a very small 
magnitude and, therefore, cause small changes in the 
weights and biases, even though the weights and biases 
are far from their optimal values. The purpose of the 
resilient backpropagation (Rprop) training algorithm is 
to eliminate these harmful effects of the magnitudes of 
the partial derivatives. Only the sign of the derivative 
can determine the direction of the weight update; the 
magnitude of the derivative has no effect on the weight 

update. The size of the weight change is determined by 
a separate update value.  
 

4. Result and Discussion 
4.1 Comparison of the Inverted Pendulum 

using NARMA-L2 with Resilient 
Backpropagation and Levenberg 
Marquardt Backpropagation Algorithm for 
Step Input signal 

The simulink model of the inverted pendulum using 
NARMA-L2 with Resilient backpropagation and 
Levenberg Marquardt backpropagation algorithm for 
step input signal is shown in Figure 5 below. 

 
Figure 5 Simulink model of the inverted pendulum using NARMA-L2 with Resilient backpropagation and 

Levenberg Marquardt backpropagation algorithm for step input signal 
The inverted pendulum with the proposed controllers simulation result are shown in Figure 6 below. 

 
Figure 6 Step response simulation result 
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The data of the rise time, percentage overshoot, settling time and peak value is shown in Table 3. 
Table 3 Step response data 

No Performance Data Resilient backpropagation Levenberg 
Marquardt backpropagation 

1 Rise time 1.12 sec 1.65 sec 
2 Per. overshoot 20 % 32 % 
3 Settling time 2.4 sec 10.5 sec 
4 Peak value 3 Degree 3.3 Degree 
 
As Table 3 shows that the inverted pendulum with an oscillatory base using NARMA-L2 with Resilient 
backpropagation algorithm improves the performance of the system by minimizing the rise time, percentage 
overshoot and settling time. 

4.2 Comparison of the Inverted Pendulum using NARMA-L2 with Resilient Backpropagation and 
Levenberg Marquardt Backpropagation Algorithm for Random Input signal 

The simulink model of the inverted pendulum using NARMA-L2 with Resilient backpropagation and Levenberg 
Marquardt backpropagation algorithm for random input signal is shown in Figure 7 below. 

 
Figure 7 Simulink model of the inverted pendulum using NARMA-L2 with Resilient backpropagation and 

Levenberg Marquardt backpropagation algorithm for random input signal 
 

The inverted pendulum with the proposed controllers simulation result are shown in Figure 8 below. 

 
Figure 8 Random input signal simulation result 
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Figure 8 shows that the inverted pendulum with an 

oscillatory base using NARMA-L2 with Resilient 
backpropagation algorithm improves the performance 
of the system by minimizing the percentage overshoot 
and tracking the reference signal. 

 
5. Conclusion 

In this paper, performance investigation of an inverted 
pendulum system using neural network theory have 
been analysed and simulated successfully. The 
mathematical model of Inverted Pendulum on a Cart 
and Cart driving mechanism have been developed. The 
inverted pendulum with NARMA-L2 with Resilient 
backpropagation and Levenberg Marquardt 
backpropagation algorithm Controllers have been 
designed and the comparison of the inverted pendulum 
with NARMA-L2 with Resilient backpropagation and 
Levenberg Marquardt backpropagation algorithm 
Controllers using step and random input desired 
position signals have been done using Matlab/Simulink. 
The simulation results prove that the inverted 
pendulum with NARMA-L2 with Resilient 
backpropagation controller shows improvement in 
minimizing the rise time, settling time and percentage 
overshoot than the inverted pendulum NARMA-L2 
with Levenberg Marquardt backpropagation algorithm 
Controller. Finally, the comparative and simulation 
results prove the effectiveness of the inverted 
pendulum with NARMA-L2 with Resilient 
backpropagation controller. 
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