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Abstract: Surveys primarily collect quantitative data, it can contain many kinds of questions; these questions are oft
en called variables. There are some basic types of variables. It is important to understand the different types of varia
bles, because the type of variable can lead to different kinds of data and guide your analysis. They are discrete data a
nd continuous data. Discrete data can take at most countable number of values, whereas continuous data can take an
y number of values. There is different test that used to analysis the continuous data these include:  The t-test (single t
-test, paired t-test, analysis of variance (ANOVA), linear regression (simple and multiple linear regression)). Simple 
linear regression is a statistical method that allows us to summarize and study relationships between two continuous 
(quantitative) variables. Multiple regression models thus describe how a single response variable Y depends linearly 
on a number of predictor variables. A data set that constitutes body weight and linear body measurements recorded f
or a random sample of 32 yearling Borana steers purchased from Yabello market was been used to analysis by multi
ple regression. Because my data contains four explanatory variables multiple linear regressions was found to be the 
appropriate statistical analysis method. First model simplification was done on the data set to remove not significant 
variable then interpreted on simplify model. Then check the major assumption of multiple linear regression that incl
udes: normality, homoscedasticity and linearity whether it is fulfill this assumption or not and the assessing individu
al observation include outlier test, assessments of leverage values and influential observations  
[Seid U. Review on Analysis of Continuous Data by Using R Software. N Y Sci J 2021;14(4):13-30]. ISSN 1554-
0200 (print); ISSN 2375-723X (online). http://www.lifesciencesite.com. 2. doi:10.7537/marsnys140421.02. 
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INTRODUCTION  

Data is the most salient entity in statistics as it 
is necessarily the “study of the collection, organization, 
analysis, and interpretation of data”. The numerical 
data used in statistics fall in to two main categories. 
They are discrete data and continuous data. Discrete 
data can take at most countable number of values, 
whereas continuous data can take any number of 
values.  Discrete data usually occurs when data is 
collected by counting, but continuous data usually 
occurs when data is collected by taking measurements. 
Constructs or factors being studied are represented by 
“variables”. Variables (also sometimes called 
“factors”) have “values” or “levels”. Variables 
summarize and reduce data, attempting to represent the 
“essential” information. Variables can be classified in 
various ways. A continuous variable takes on all values 
within its permissible range, so that for any two 
allowable values there are other allowable values in 
between. A continuous variable (sometimes called a 
“measurement variable”) can be used in answer to the 
question “how much”. Measurements such as weight, 
height, and blood pressure can, in principle, be 
represented by continuous variables and are frequently 
treated as such in statistical analysis. In practice, of 
course, the instruments used to measure these and other 

phenomena and the precision with which values are 
recorded allow only a finite number of values, but these 
can be regarded as points on a continuum(Ragland, 
1992).  

Mathematically, a discrete variable can take 
only certain values between its maximum and 
minimum values, even if there is no limit to the number 
of such values (e.g., the set of all rational numbers is 
countable though unlimited in number). Discrete 
variables that can take any of a large number of values 
are often treated as if they were continuous. If the 
values of a variable can be placed in order, then 
whether the analyst elects to treat it as discrete and/or 
continuous depends on the variable’s distribution, the 
requirements of available analytic procedures, and the 
analyst’s judgment about interpretability (Hertz-
Picciotto, 1999). 

Continuous variables has two type’s interval 
and ratio. Interval is differences (intervals) between 
values are meaningful, but ratios of values are not. That 
is, if the variable takes on the values 11-88, with a 
mean of 40, it is meaningful to state that subject A’s 
score of 60 is “twice as far from the mean” as subject 
B’s score of 50. But it is not meaningful to say that 
subject A’s score is “1.5 times the mean”. The reason is 
that the zero point for the scale is arbitrary, so values of 
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the scores have meaning only in relation to each other. 
Without loss of information, the scale can be shifted: 
11-88 could be translated into 0-77 by subtracting 
11(Sun, 2011a).  

Scale scores can also be multiplied by a 
constant. After either transformation, subject A’s score 
is still twice as far from the mean as is subject B’s, but 
subject A’s score is no longer 1.5 times the mean score. 
Psychological scales (e.g., anxiety, depression) often 
have this level of measurement. An example from 
physics is temperature measured on the Fahrenheit or 
Celsius scale. Ratio is both differences and ratios are 
meaningful. There is a non-arbitrary zero point, so it is 
meaningful to characterize a value as “x” times the 
mean value. Any transformation other than multiplying 
by a constant (e.g., a change of units) will distort the 
relationships of the values of a variable measured on 
the ratio scale. Physiological parameters such as blood 
pressure or cholesterol are ratio measures. Kelvin or 
absolute temperature is a ratio scale measure (Zeger, 
1991a).  

Linear regression is suitable for modeling the 
outcome when it is measured on a continuous, or near-
continuous scale. In regression analysis the relationship 
is asymmetric in that we think the value of one variable 
is caused by (or we wish to predict it by) the value or 
state of another variable. 

The outcome variable is denoted as the 
dependent, or outcome, variable, whereas the 'causal' or 
'predictor' variables are called the independent or 
predictor variables. We continue to refer to the 
predictor variable(s) of primary interest as the exposure 
variable(s). The predictor variables can be measured on 
a continuous, categorical or dichotomous scale(Dohoo 
et al., 2003). 

Surveys primarily collect quantitative data, it 
can contain many kinds of questions; these questions 
are often called variables. There are some basic types 
of variables. It is important to understand the different 
types of variables, because the type of variable can lead 
to different kinds of data and guide your analysis 
(Woolf et al., 1990).  

1. STATISTICAL TESTS TO ANALYZE 
CONTINUOUS DATA  

The t-test and one-way analysis of variance 
(ANOVA) are basic tools for assessing the statistical 
significance of differences between the average values 
of a continuous outcome across two or more samples. 
Both the t-test and one-way ANOVA can be seen as 
methods for assessing the association of a categorical 
predictor – binary in the case of the t-test, with more 
than two levels in the case of one-way ANOVA – with 
a continuous outcome. Both are based in statistical 
theory for normally distributed outcomes, but work 
well for many other types of data; and both turn out to 
be special cases of linear regression models. The linear 

regression model with a continuous outcome and a 
single or more continuous predictor variables(Hertz-
Picciotto, 1999) 
1.1. Independent Sample t-test 

An experiment with two groups can be either a 
paired-samples design or an independent-samples 
design. For either design, the appropriate statistical test 
is a t test. However, the two different designs require 
different formulas for calculating the t test, so you must 
decide what kind of design you have before you 
analyze the data. In an independent-samples design, 
there is no reason to pair up the scores in the two 
groups. You cannot tell the difference between the two 
designs just by knowing the independent variable and 
the dependent variable. And, after the data are 
analyzed, you cannot tell the difference from the t-test 
value or from the interpretation of the experiment. To 
tell the difference, you must know whether scores in 
one group are paired with scores in a second group. 
This is used where data are collected from groups 
which are unrelated, such as the length at one year of a 
group of infants who were breastfed, compared with a 
group who were not breastfed. While using t-test we 
assume that the population from which sample has 
been taken is normal or approximately normal, sample 
is a random sample, observations are 
independent(Spatz, 2007). 
Test statistics 

The test statistics is t and it is calculated as 
follows 

 

tcal  =
SE

XX 12 
 

 
The test is simply an extension of a one 

sample hypothesis t test procedure.  1X  and 2X  are 
the means of the two groups of data.  Also the SE in the 
denominator refers to standard error value.  Since there 
are two standard error values associated with the 
respective group mean, the standard error in the 
denominator is the sum of the standard errors of the 
two group means. This standard error is called the 
standard error for the difference between two means. 
However as SE values are derived from variance and 
are not directly additive, they should be converted into 
variance of means and the latter are added(Yosef 
Tekle-Giorgis, 2017). 
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1.2. Paired Sample t-test 
The paired t-test is for use in settings where 

individuals or observations are linked across the two 
samples. Examples include measurements taken at two 
time points on the same individuals, or on other 
naturally linked pairs, as in a clinical trial where one 
eye is treated and the other serves as a control. In a 
paired-samples (or paired-scores) design, each 
dependent variable score in one treatment is matched or 
paired with a particular dependent-variable score in the 
other treatment. This pairing is based on some logical 
reason for matching up two scores and not on the size 
of the scores. The paired-samples design is a favourite 
of researchers if their materials permit. The logical 
pairing required for this design can be created three 
ways: natural pairs, matched pairs, and repeated 
measures. Fortunately, the arithmetic of calculating a t-
test value is the same for all three. In a natural pair’s 
investigation, the researcher does not assign the 
participants to one group or the other; the pairing 
occurs naturally, prior to the investigation. Matched 
pairs in some situations, the researcher has control over 
the ways pairs are formed and matches can be 
arranged. One method is for two participants to be 
paired on the basis of similar scores on a pretest that is 
related to the dependent variable. Repeated measures a 
third kind of   paired-samples design is called a 
repeated measures design because more than one 
measure is taken on each participant. Assumption is the 

observation in each pair should be different and the set 
of differences for all pairs is approximately normally 
distributed even though the original observation in the 
groups may not be. This design may take the form of a 
before-and-after experiment. In this case the two data 
sets are generated from same or related individuals.  
Thus the two data sets are not independent (Spatz, 
2007). 
 
Test statistic  

The test statistic is t and it is computed as 
follows: 
 

tcal = 

d
S

d
, where 

d  = the mean paired difference = ∑di/n 
di = is the paired difference obtained by deducting the 
paired data  

d
S  = the standard error of the mean paired difference 

and it is calculated as 
 

d
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1.3. Single Sample t-test 
This test compares a sample mean with a population mean. Assumption the sample data is from normally 

distributed population of values and are representative of that population (random selection). 
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Source: (Yosef Tekle-Giorgis, 2017)  
 

 

1.4. Analysis of Variance (ANOVA) 
Suppose that we need to compare sample 

averages across the arms of a clinical trial with 
multiple treatments, or more generally across more 
than two independent samples. For this purpose, one-
way analysis of variance (ANOVA) and the F-test take 
the place of the t-test. The appropriate technique for 
analyzing continuous variables when there are three or 
more groups to be compared is the analysis of variance, 
commonly referred to as ANOVA. An example might 
be comparing the blood pressure reduction effects of 
the three drugs. The principals involved in the analysis 
of variance are the same as those in the t-test. Under 
the null hypothesis we would have the following 
situation: there would be one big population and if we 
picked samples of a given size from that population we 
would have a bunch of sample means that would vary 
due to chance around the grand mean of the whole 
population. If it turns out they vary around the grand 
mean more than we would expect just by chance alone, 
then perhaps something other than chance is operating. 
Perhaps they don't all come from the same population. 
Perhaps something distinguishes the groups we have 
picked. We would then reject the null hypothesis that 
all the means are equal and conclude the means are 
different from each other by more than just chance. 
Essentially, we want to know if the variability of all the 
groups’ means is substantially greater than the 
variability within each of the groups around their own 
mean(Ahlbom, 1993).  

We calculate a quantity known as the 
between-groups variance, which is the variability of the 
group means around the grand mean of all the data. We 
calculate another quantity called the within-groups 
variance, which is the variability of the scores within 
each group around its own mean. One of the 
assumptions of the analysis of variance is that the 
extent of the variability of individuals within groups is 
the same for each of the groups, so we can pool the 
estimates of the individual within group variances to 
obtain a more reliable estimate of overall within-groups 
variance. If there is as much variability of individuals 
within the groups as there is variability of means 
between the groups, the means probably come from the 
same population, which would be consistent with the 
hypothesis of no true difference among means, that is, 
we could not reject the null hypothesis of no difference 
among means. The ratio of the between-groups 
variance to the within-groups variance is known as the 
F ratio. Values of the F distribution appear in tables in 
many statistical texts and if the obtained value from our 
experiment is greater than the critical value that is 

tabled, we can then reject the hypothesis of no 
difference. There are different critical values of F 
depending on how many groups are compared and on 
how many scores there are in each group. To read the 
tables of F, one must know the two values of degrees of 
freedom (df). The df corresponding to the between-
groups variance, which is the numerator of the F ratio, 
is equal to k – 1, where k is the number of groups. The 
df corresponding to the denominator of the F ratio, 
which is the within-groups variance, is equal to k ×  
(n – 1), that is, the number of groups times the number 
of scores in each group minus one(Ahlbom, 1993) 
 
1.5. Linear Regression 

Linear regression attempts to model the 
relationship between two variables by fitting a linear 
equation to observed data. One variable is considered 
to be an explanatory variable, and the other is 
considered to be a dependent variable. For example, a 
modeler might want to relate the weights of individuals 
to their heights using a linear regression model. Before 
attempting to fit a linear model to observed data, a 
modeler should first determine whether or not there is a 
relationship between the variables of interest. This does 
not necessarily imply that one variable causes the other 
(for example, higher SAT scores do not cause higher 
college grades), but that there is some significant 
association between the two variables. A scatterplot 
can be a helpful tool in determining the strength of the 
relationship between two variables. If there appears to 
be no association between the proposed explanatory 
and dependent variables (i.e., the scatterplot does not 
indicate any increasing or decreasing trends), then 
fitting a linear regression model to the data probably 
will not provide a useful model. A valuable numerical 
measure of association between two variables is the 
correlation coefficient, which is a value between -1 and 
1 indicating the strength of the association of the 
observed data for the two variables(Zeger, 1991b). 
Linear regression is the most basic type of regression 
and commonly used predictive analysis. The overall 
idea of regression is to examine two things: (1) does a 
set of predictor variables do a good job in predicting an 
outcome variable? Is the model using the predictors 
accounting for the variability in the changes in the 
dependent variable? (2) Which variables in particular 
are significant predictors of the dependent variable? 
And in what way do they–indicated by the magnitude 
and sign of the beta estimates–impact the dependent 
variable? These regression estimates are used to 
explain the relationship between one dependent 
variable and one or more independent variables. (3) 
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What is the regression equation that shows how the set 
of predictor variables can be used to predict the 
outcome? The simplest form of the equation with one 
dependent and one independent variable is defined by 
the formula y = c + b*x, where y = estimated 
dependent score, c = constant, b = regression 
coefficients, and x =independent variable(Woolf et al., 
1990). 

1.5.1.  Simple Linear Regression 
Simple linear regression is a statistical method 

that allows us to summarize and study relationships 
between two continuous (quantitative) variables. The 
term simple linear regression 'model' is used to denote 
the formal statistical formula, or equation, that 
describes the relationship we believe exists between the 
predictor and the outcome(Sun, 2011b).  

The regression equation that describes a 
simple linear type regression relationship in a 
population is expressed as: 
 
Yi = α +β Xi +εi 
 
Where α is the intercept (the value of Y when X = 0) 
and β is the slope of the relationship.  
εi is referred as residual or error term and it is the 
departure of an actual (measured) Y from the estimated 
Y using the above regression equation (��). The sample 
regression relationship is expressed as  
Yi = a +b Xi +εi,  
where the terms are as defined above.   

For example, the model. is a statistical way of 
describing how the value of the outcome (variable Y), 
changes across population groups formed by the values 
of the predictor variable Xi More formally it says that 
the mean value of the outcome for any value of the 
predictor variable is determined using a starting point 
α, when Xi has the value O and, for each unit increase 
in Xi, the outcome changes by b units. α is usually 
referred to as the constant or the intercept term whereas 
b is usually referred to as the regression coefficient. 
The εi: component is called the error and reflects the 
fact that the relationship between Xi and Y is not exact. 
We will assume that these errors are normally and 
independently distributed, with zero mean and 
variance. We estimate these errors by residuals; these 
are the difference between the observed (actual) value 
of the observation and the value predicted by the 
model(Dohoo et al., 2003). 
1.5.2. Multiple Linear Regression 

So far, we have seen the concept of simple 
linear regression where a single predictor variable X 
was used to model the response variable Y. In many 
applications, there is more than one factor that 
influences the response. Multiple regression models 

thus describe how a single response variable Y depends 
linearly on a number of predictor variables. We move 
from the simple linear regression model with one 
predictor to the multiple linear regression model with 
two or more predictors. That is, we use the adjective 
"simple" to denote that our model has only predictor, 
and we use the adjective "multiple" to indicate that our 
model has at least two predictors. In the multiple 
regression setting, because of the potentially large 
number of predictors, it is more efficient to use 
matrices to define the regression model and the 
subsequent analyses. This lesson considers some of the 
more important multiple regression formulas in matrix 
form(Sun, 2011a) 

The equation for multiple linear regression 
relationship is expressed as 
 
Yi = α +β1X1 +β2X2+β3X3 ……….+βkXk +εi, where 
Yi = the dependent variable 
 
X1 …. Xk = independent (explanatory) variables 
considered to have influence on the Y variable 
β1 ….βk = Partial regression slopes corresponding to 
the respective Xi  
βi is defined as the rate of change in Y for a unit change 
in Xi, while the effects of the other independent 
variables remain constant. εi is the residual variance in 
Y after taking into consideration the effects of the Xi 
variables included in the model. The parallel for a 
multiple regression equation based on sample data is 
given as   
  Yi = α +b1X1 +b2X2+b3X3 ……….+bkXk             

      
Source: (Yosef Tekle-Giorgis, 2017) 
1.6. Linear Correlation 

Correlation analysis are about relationships 
among variables.  Variables are said to be related when 
a change in the magnitude of one variable is associated 
with a change in the magnitude of the other variable.  
The change in magnitude for quantitative variables is 
an increase or decrease in the value of the variable.  If 
an increase in the value of one of the variable is 
accompanied by an increase in the other variable, the 
relationship is referred as a positive relationship 
(Figure1a).  If on the other hand an increase in the 
value of one of the variable is accompanied by a 
decrease in the other variable, the relationship is 
negative (Figure1b). Two or more variables are said to 
be unrelated if one of the variable is not responsive as 
the other variable changes.  (Figure1c).  For a nominal 
scale data, the positive relationship exists when the 
change in the categories is along the same direction.  If 
not the relationship is negative(Yosef Tekle-Giorgis, 
2017).   
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Figure 1.   (Relationship b/n X and Y variables. a) Positive, b) negative, c) no relationship 

 

2. ANALYSIS OF A CONTINUOUS DATA  
2.1.  Source of Data  

The data was obtained from module called “Software Based Statistical Methods for Scientific Research 
Training Module” for PhD student of Haramaya University prepared by Yosef Tekle-Giorgis in 2017(Yosef Tekle-
Giorgis, 2017). The data were slightly modified by I myself for getting some significant results for a better test of 
my understanding and fitting of the model at p-value=0.05 because most variables were non-significant.  

 
2.2.  Description of the Data  

A data set that constitutes body weight and linear body measurements recorded for a random sample of 32 
yearling Borana steers purchased from Yabello market.  Body weight of animals is recorded for a variety of reasons 
but measuring the weight of large animals is quite a difficult task since the weighing scale is number some to carry 
from place to place.  Especially when there is a need to take weight measurements of cattle from market or form 
households, the problem is severe as the balance is not easily portable.  Besides, there is also a need to construct a 
chute to lead the animals to the weighing scale. On the other hand, body weight of animals (Kg) (cattle, small 
ruminants etc) can be estimated from linear body measurements like heart girth, wither height, crown height (cm) 
etc with a reasonable precision if the equation that relates the body weight of the animal with linear body 
measurements is developed. Table gives data on body weight and various linear body measurements of 32 
randomly taken yearling Borana steers.  Establish a multiple regression relationship between body weight and the 
linear measurements.  Also select the linear measurements that are significantly related with body weight to be 
included in the regression model? (Yosef Tekle-Giorgis, 2017). 

 
 
 
 
 
 
Table 1.  Body weight (kg) and various linear body measurements recorded from 32 randomly taken yearling 
Borana steers. 
ID BWT HG WH CH Belly G  
1 98 110 98.5 99 126.5 
2 100 110 96.5 99.5 128.5 
3 113 119 99.5 105 136 
4 92 109 99.5 102 127 
5 135 126 103 103.5 132 
6 124 123 105.5 102.5 126 
7 90 110 94.5 102 130 
8 104 112 99 95.5 132 
9 85.5 106 95 98.5 119.5 
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10 85 112 93 95 118.5 
11 103 119 95 101 121 
12 104 124 97 100 124 
13 81 118 94 102 120 
14 79 119 92 94 131 
15 100 109 94 102 127 
16 102 117 93 99 118 
17 86 103 92 94 116 
18 95 112 102 105 130 
19 111 117 97.5 102.5 131 
20 88 107 91.5 99 127.5 
21 81 111 91 93 118 
22 93 109 98 97 117 
23 91 99.5 98.5 98 123 
24 95 121 103 103 121 
25 110 120 105 104 130 
26 113.5 118.5 96 104 125 
27 123 121 108 105 119 
28 100.5 115 93.5 106 125 
29 99 112 91.5 106 121 
30 105.5 120 93.5 95.5 118.5 
31 104.5 113.5 92.5 94.5 123 
32 89 114 91 92 121 
Source: (Yosef Tekle-Giorgis, 2017)  
 
2.3. Types of Variables of the Data 

Body Weight (BWT) into dependent variable (outcome variable). 
 
Independent variables  
HG      Heart Girth (cm) 
WH     Wither Height (cm) 
CH     Crown Height (cm) 
Bell G     Belly Girth (cm) 
 
2.4.  Test for Analysis Data 

 
2.4.1. Multiple linear regression 

A multiple regression relationship gives a 
better prediction of Y than a simple linear regression 
relationship that takes each Xi separately.  However 
not all Xi variables considered have significant 
influence on Y and it is important to select only those 
regressor variables that significantly influence Y and 
include them in the regression model equation. 
Popularly there are two step wise procedures employed 
to select the Xi variables for the model and these are 
Step up (Forward) selection and Step down (back ward 
illumination) procedures.  In case of back ward 
illumination procedure, a regression is established with 
all the variables at hand and step by step those 
variables that are not significantly related with Y will 
be drooped.  Whereas in case of forward selection Xi 
variables are added step by step one at a time by testing 
their significance.  The steps for the backward 
illumination procedure is as follows: 1) Establish a 

regression relationship between Y and all Xi variables. 
Test for the significance of the relationship between Y 
and each Xi. This is done employing the t test 
procedure discussed earlier and testing each partial 
slope if different from 0 or not. 2) Drop the Xi variable 
that is most non-significantly related with Y and 
establish a regression relationship with the rest of Xi 
variables. 3)  Again drop the Xi variable that is most 
non-significantly related with Y and reestablish the 
regression relationship with the rest.  This procedure of 
dropping one Xi variable at a time will be continued 
until Xi variables that are significantly related with Y 
remain.  Finally those that are significantly related with 
Y are considered to build the predictive regression 
equation(Zeger, 1991a). 
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2.4.2. Model Simplification  
 In our initial model “multipleintil” Belly G 
(Belly girth) and CH (crow height) are not significant. 
Thus, they can be dropped from the model. Thus, they can 
be dropped from the model. 
 
multipleReduc<-lm(BWT~HG+WH) 
> summary(multipleReduc) 
 
Call: 
lm(formula = BWT ~ HG + WH) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-18.990  -5.005   2.259   5.004  16.420  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -134.0936    37.6852  -3.558  0.00131 ** 
HG             0.9179     0.2795   3.284  0.00267 ** 
WH             1.3302     0.3777   3.522  0.00144 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
1 
 
Residual standard error: 8.927 on 29 degrees of 
freedom 
Multiple R-squared:  0.5716, 
F-statistic: 19.35 on 2 and 29 DF,  p-value: 4.59e-06 
Now let’s compare the two nested models (multipleintil and multipleReduc). In R we can compare nested models 
with the anova( ) 
 
anova(Multiple_fit,multipleReduc) 
Analysis of Variance Table 
 
Model 1: BWT ~ HG + WH + `Belly G` + CH 
Model 2: BWT ~ HG + WH 
  Res.Df    RSS Df Sum of Sq      F Pr(>F) 
1     27 2167.6                            
2     29 2310.9 -2   -143.33 0.8927 0.4213 
 
 
Interpretation: the p-value = 0.4213 indicates that there is no significant difference between the two models. Thus, 
removing Belly G (Belly girth) and CH (crow height) from the model could not result in any information loss. 

Model simplification using “stepwise” Alternatively, the “stepwise” function could be used to remove non-
significant variables. You can perform stepwise selection (forward, backward, both) using the stepAIC ( ) function 
from the ‘MASS’ package. stepAIC ( ) performs stepwise model selection by exact AIC. 
 
step<-stepAIC(multipleintil, direction = "both") 
Start:  AIC=144.9 
BWT ~ HG + WH + `Belly G` + CH 
 
            Df Sum of Sq    RSS    AIC 
- `Belly G`  1     38.08 2205.7 143.46 

Multiple_fit<-lm(BWT~HG+WH+`Belly G`+CH) 
> summary(Multiple_fit) 
 
Call: 
lm(formula = BWT ~ HG + WH + `Belly G` + CH) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-18.659  -4.934   1.306   5.774  15.554  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -174.6567    49.1120  -3.556  0.00141 ** 
HG             0.8540     0.2851   2.995  0.00581 ** 
WH             1.0597     0.4326   2.449  0.02108 *  
`Belly G`      0.2278     0.3307   0.689  0.49689    
CH             0.4569     0.4848   0.942  0.35432    
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 
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- CH         1     71.31 2238.9 143.94 
<none>                   2167.6 144.90 
- WH         1    481.64 2649.2 149.32 
- HG         1    720.22 2887.8 152.08 
 
Step:  AIC=143.46 
BWT ~ HG + WH + CH 
 
            Df Sum of Sq    RSS    AIC 
- CH         1    105.26 2310.9 142.95 
<none>                   2205.7 143.46 
+ `Belly G`  1     38.08 2167.6 144.90 
- WH         1    531.86 2737.6 148.37 
- HG         1    732.46 2938.2 150.63 
 
Step:  AIC=142.95 
BWT ~ HG + WH 
 
            Df Sum of Sq    RSS    AIC 
<none>                   2310.9 142.95 
+ CH         1    105.26 2205.7 143.46 
+ `Belly G`  1     72.02 2238.9 143.94 
- HG         1    859.46 3170.4 151.07 
- WH         1    988.64 3299.6 152.35 
> step$anova 
Stepwise Model Path  
Analysis of Deviance Table 
 
Initial Model: 
BWT ~ HG + WH + `Belly G` + CH 
 
Final Model: 
BWT ~ HG + WH 
 
 
         Step Df  Deviance Resid. Df Resid. Dev      AIC 
1                                 27   2167.611 144.9006 
2 - `Belly G`  1  38.07717        28   2205.689 143.4579 
 
 
Initial Model: 
 
BWT ~ HG + WH + CH + `Belly G` + BL 
 
Final Model: 
BWT ~ HG + WH 
 
Interpretation: you can see the difference between the Initial and Final model, the Crown height, Belly girth has 
been dropped from the final model. The final model encompasses only HG (Heart girth) and WH (Wither height). 

Let’s develop a multiple regression model of -BHT- using HG (Heart girth) and WH (Wither height) as 
explanatory/predictor variable. 
 
multifinal<-lm(BWT ~ HG +WH) 
> summary(multifinal) 
 
Call: 
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lm(formula = BWT ~ HG + WH) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-18.990  -5.005   2.259   5.004  16.420  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -134.0936    37.6852  -3.558  0.00131 ** 
HG             0.9179     0.2795   3.284  0.00267 ** 
WH             1.3302     0.3777   3.522  0.00144 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 8.927 on 29 degrees of freedom 
Multiple R-squared:  0.5716, 
F-statistic: 19.35 on 2 and 29 DF,  p-value: 4.59e-06 
 
Interpretation: 

When we inc1ude data on -Heart girth- and - Wither height -, the overall model is highly significant with 
an explained proportion of the total variation in the data (R2=SSM/SST) of 57.2%. 

The coef. of HG(heart girth) (0.9179) indicate that when the Heart girth of the steers increases by one 
centimetre the body weight increases by 0.9179 Kg  given that the other variables are held constant. 

The coef. Of WH/ Wither height (1.3302) indicate that when the wither height  of the steers increases by 
one centimetre the body weight increases by 1.3302 Kg  given that the other variables are held constant. The 
positive value indicates the positive trend of the regression line. 

Accordingly the final regression model used to estimate the body weight of the studied steers from linear 
body measurements is given as  
 
Expected value (Body weight) (kg) = -134.0936 + (0.9179* Heart girth (cm)) + (1.3302* Wither height (cm))      
These expected values (i.e. regression line) can be calculated in R using the command 
pred<-fitted(multifinal) 
> pred 
        1         2         3         4         5         6         7         8  
 97.90685  95.24640 107.49854  98.31913 118.57990 119.15164  92.58596 100.40784  
        9        10        11        12        13        14        15        16  
 89.57930  92.42650 101.51253 108.76268  99.26437  97.52187  91.00290  97.01621  
       17        18        19        20        21        22        23        24  
 82.83481 104.39851 103.00221  85.84147  88.84812  96.32380  88.26847 113.99020  
       25        26        27        28        29        30        31        32  
115.73270 102.38379 120.64131  95.84544  90.43117 100.43514  93.13830  91.60194 
 
These are the predicted values for the all observation that determine by the final model. 
 
 
anova(multifinal) 
Analysis of Variance Table 
 
Response: BWT 
          Df  Sum Sq Mean Sq F value    Pr(>F)     
HG         1 2094.78 2094.78  26.287 1.781e-05 *** 
WH         1  988.64  988.64  12.406  0.001438 **  
Residuals 29 2310.94   79.69                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 
1 
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In R you can use coefficients () command to visualize the regression coefficients 
coef(multifinal) 
 (Intercept)           HG           WH  
-134.0935837    0.9179408    1.3302228  
confint(multifinal, level = 0.95) 
                   2.5 %     97.5 % 
(Intercept) -211.1685040 -57.018663 
HG             0.3462771   1.489605 
WH             0.5578210   2.102625 
 
 

 
2.4.3. Model diagnosis     
Assessing the major assumptions 
Assessing normality: The residuals of the model should also follow a normal distribution, for all values of the expla
natory variables. Most commonly, the distribution of the residuals is evaluated in a histogram or in a Q-Q (quantile-
quantile) plot. 

 
Figure 2.  The left Histogram of BWT and the right Histogram of BWT with normal curve 
The Q-Q plot displays the quantiles of the residuals versus the quantiles of the normal probability distribution. 
 
qqnorm(res) 
> qqline(res) 
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Figure 3. Q-Q plot (test of normality) 
 
 
Interpretation: The resulting plot will be (approximately) a straight line above 45° to the horizontal so the residuals 
of the model follow a normal distribution, for all values of the explanatory variables. 
The official test for normality is the Shapiro-Wilk W test for normality. 
shapiro.test(res) 

 

 Shapiro-Wilk normality test 

 

data:  res  

W = 0.94949, p-value = 0.1394 

 
 
Interpretation: as we can see from the Shapiro-Wilk normality test result, the residuals of this model follow a 
normal distribution. The Shapiro-Wilk's statistic, which for this example gives a value of W=0.94949 (small 
values are critical for Ho: normal distribution) and P> 0.1394 since the p-value is greater than 0.05, we can accept 
our null hypothesis which states that the data is normally distributed. 
 
Assessing homoscedasticity: The variance of the outcome is constant at all levels of the explanatory variables and 
within all combinations of the explanatory variables. One can examine the homoscedasticity assumption, by plotting 
the standardised residuals against the predicted values. 
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Figure 4. Plot of the standardised residuals against predicted values (homoscedasticity test)  
 
Interpretation: the variance seems to remain relatively constant for all values:  
the distribution creates a band around “0”, without evident funnel shape. A formal test of equal variances 
(homoscedasticity) is the CookWeisberg test for heteroscedasticity (ie the null hypothesis is Ho: data is 
homoscedastic).  
Homoscedasticity could be officially tested using ncvTest command in package "car" 
ncvTest(multifinal) 
Non-constant Variance Score Test  
Variance formula: ~ fitted.values  
Chisquare = 2.175292    Df = 1     p = 0.1402429 
 
Interpretation: The p-value is 0. 1402429 and it supports the null hypothesis (i.e. the variance of the outcome is 
constant at all levels of the explanatory variables and within all combinations of the explanatory variables). Thus, 
the assumption of homoscedasticity or constant variance is fulfilled. 
 
Assessing linearity: regression models assume a linear relationship between the response and 
continuous explanatory variables. In our example dataset HG is a continuous explanatory variable. Thus, we expect 
a linear relationship between -BWT- and -HG-. 

 
Figure 5. Plot of the residuals against HG (test of linearity) 
Interpretation: in this example the relationship is not totally linear, but it is sufficiently close for our modelling 
purposes. 
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In our example dataset WH is a continuous explanatory variable. Thus, we expect a linear relationship between -
BWT- and -WH-. 

 
Figure 16. Plot of the residuals against WH (test of linearity) 
Interpretation: in this example, the relationship is not totally linear, but it is sufficiently close for 
our modelling purposes. 
plot(multifinal) 

 
Figure 6. Plot graph to Assessing the major assumptions the at the same time  
Plot of the standardised residuals against the predicted values (homoscedasticity test) on top left, the approximately 
equal-width band of points suggests our model likely meets the assumption of equal variances. Q-Q plot (test of 
normality) on the top of the right. Bottom right is leverage value. 
 

2.4.4. Assessment of individual observations 
 
Here we assess the fit of the model on an observation by observation basis. 
Assessing outliers: Identify observations with large standardized residuals 
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outlierTest(multifinal) 

 

No Studentized residuals with Bonferonni p < 0.05 

Largest |rstudent|: 

    rstudent unadjusted p-value Bonferonni p 

24 -2.426935           0.021914      0.70126 

 
Interpretation: as shown in the analysis there is no observation with standardised value greater than 3 and 
Bonferonni p-value less than 0.05, observation number 24 has standardised value= -2.427 which is still not greater 
than 3. 
You can also graphically visualize outliers using a command “qqPlot” 

 
Figure 7: Plot of outliers 
Interpretation: we can see that no observation appears to be significantly outlier 
 
Assessing leverage values 
 

A leverage effect occurs when one or a few excessively high X values are observed as continuous 
explanatory variable. 

A common rule is to examine observations that have leverage values >2(k+ l)/n, where k is the number of 
predictors in the model (or the number of regression parameters, excluding the intercept) and n is the number of 
observation. In our example k=2 and n =20. Thus, values > 2*(2+1)/32 = 0.1875 deserve attention. 
 
lev[lev>.1875] 

       23        27  

0.2796646 0.2243369 

  
Observation with lev value greater than 0.1875 in lev dataset. 
The leverage values could also be plotted 
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plot(hatvalues(multifinal)) 
> abline(h=0.1875) 

 
Figure 8: Plot of leverages (hatvalues) 
Interpretation: the observations above the cut of line deserve attention. 
 
Assessing influential observations: Cook's distance 
We can estimate the Cook's value using the “cook.distance” command. 
cook<-cooks.distance(multifinal) 

> influencePlot(multifinal) 

      StudRes       Hat      CookD 

5   2.1237257 0.1590213 0.25358538 

23  0.3550574 0.2796646 0.01682161 

24 -2.4269352 0.1021062 0.19105068 
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Figure 9. Plot of the residuals vs the hat values (influence plot) 
Interpretation: the graph displays studentized residuals, hat-values and Cook’s D on a single plot. The horizontal 
axis represents the hat-values; the vertical axis represents the studentized residuals; circles for each observation 
represent the relative size of the Cook’s D. The radius is proportional to the square root of Cook’s D, and thus the 
areas are proportional to the Cook’s D. As indicated in the influential plot observations number 5, 23 and 24 
deserves attention. 
 
3. CONCLUSSION 

The analyzed data using multiple linear regression 
in the “R” software was revealing that the model was 
fit.  Multiple linear regression was also the best 
statistical analysis of continuous data analysis to 
determine the measures of the proportion of the 
variation in response variables “Y” that is explained by 
the variation in explanatory variable “X” using 
regression coefficients. A data set that constitutes body 
weight and linear body measurements recorded for a 
random sample of 32 yearling Borana steers purchased 
from Yabello market was been used to analysis by 
multiple regression. Because my data contains four 
explanatory variables multiple linear regressions was 
found to be the appropriate statistical analysis method. 
Frist model simplification was done on the data set to 
remove not significant variable then interpreted on 
simplify model. Then check the major assumption of 
multiple linear regression that includes: normality, 
homoscedasticity and linearity whether it is fulfill this 
assumption or not and the assessing individual 
observation include outlier test, assessments of 
leverage values and influential observations. 
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