
 

48 

 
The Investigation of Supply Chain Optimization based on Artificial Network and Production Firms 

Techniques 
 

Reza Emami 
 

Master of Industrial Engineering (System Management), Islamic Azad University, Najafabad, Iran 
emamireza14@yahoo.com 

 
Abstract: The supply chain optimization is a difficult problem to solve in the context of distributed information 
across different members and dynamic changes in the structure and content of the information environment with 
multidisciplinary decisions employees' decision making at different levels. In this research work, an approach to the 
dynamic optimization of local decisions to assure global optimization in supply chain performance is developed 
within the frameworks of a Collective Intelligence and Multi-Agent Systems. As a COIN, we mean a large multi-
agent system where there is no centralized control and communication, but also, there is a global task to complete: 
the global supply chain optimization. The proposed framework is focused on the interactions at local and global 
levels among the agents in order to improve the overall supply chain business process behavior. Besides, learning 
consists of adapting the local behavior of each agent (micro-learning) with the aim of optimizing a given global 
behavior (macro-learning). Reinforcement learning algorithms are used at the local level, while generalization of the 
Q-neural algorithm is used to optimize the global behavior. The framework is implemented over JADE agent 
platform. The experimental results demonstrate that this problem is a good experimental field for the investigation 
and application of the COIN theory.  
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1. Introduction 

In order to make good decisions within a SCN, a 
manufacturer needs to coordinate local activities with 
those of upstream suppliers and downstream 
customers under uncertainty and imprecision in a very 
dynamic environment. Other entities in the chain are 
faced with a similar problem. The ability to manage 
the complete supply chain network (SCN) and to 
optimize decisions is increasingly being recognized as 
a crucial competitive factor [17]. Unfortunately, as the 
scope of supply chain management is extended, the 
underlying optimization problems grow dramatically 
in size. This is particularly important for operational 
problems, where the solution to the optimization 
problem specifies a short-term assignment or schedule 
of resource use. As a consequence, logistics gets a 
new focus on optimization of the production process 
in a very dynamic environment [12]. On the other 
hand, the availability of real-time status information is 
creating a need for ‘Re -optimization’ models and 
methods that can quickly repair a plan in response to 
changes in input data.  

Also, most of these approaches reflect today’s 
supply chains model, which is essentially static, 
relying on long-term relationships among key trading 

partners. Recently several new optimization 
paradigms and approaches have been proposed. These 
new paradigms include both analytical methods 
(based on semi-definite optimization and 
computational differentiation) and simulation based 
optimization [5, 6, 7]. Though there are many 
solutions and techniques for local optimization (e.g. 
planning and scheduling systems, inventory 
management systems, market trading optimization 
systems, etc.), usually these algorithms spend a lot of 
time finding the most appropriate solution and their 
decisions do not assure the overall business 
optimization at the global level because of the 
conflicts between the local goals of the different 
entities [13, 14]. Some of the underlying mathematical 
issues involve development of fast algorithms to 
approximate the solutions to very large-scale 
problems, as well as methods for combining models 
of different types to form hybrid models. The issue of 
real-time updates to solutions has been addressed for a 
few specific applications, but no underlying theory 
has been developed. The size and difficulty of these 
problems make them impossible to solve with 
traditional optimization methods, and require the 
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development of specialized combinatorial 
optimization techniques. 

More flexible and dynamic practices offer the 
prospect of better matches between suppliers and 
customers permitting them react to a changing 
environment by adapting their operations [30]. This 
requires an approach, which can be flexible enough to 
accommodate imprecise linguistic data as well as 
precise numerical data, and which yields solutions that 
will provide compromise among different parties' 
objectives. To this end, there are few research works 
on theoretical treatment and different soft computing, 
machine learning and agent techniques developed for 
dynamic supply chain modeling and optimization in 
vague and uncertain environments [10, 11, 18, 24, 
25]. In this paper, the problem of dynamic 
optimization of the Supply Chain Network (SCN) is 
addressed within the context of the Collective 
Intelligence (COIN) theory as an extension of 
Dynamic Programming models [29] and the 
adaptation of the Q-neural algorithm [21]. Within this 
framework, a SCN is a large Multi-agent System 
(MAS) where: 

 One of the main objectives is the 
decentralization of the control and communication. 

 Each agent of the SCN is represented as an 
agent with autonomous behavior and a local utility 
function. 

 Agents model different SCN entities, the 
exchange of message and commodity objects among 
these agents emulates the information and material 
flows. 

 The learning process consists of adapting the 
local behavior of each agent with the aim of 
optimizing a given global SCN behavior. 

 The agents execute Reinforcement Learning 
(RL) algorithms at the local level while generalization 
of Q-neural algorithm is used to optimize the global 
behavior. 
 
2. Data and Methodology 

The Dynamic Programming theory forms the 
base of the RL methods used within the proposed 
approach [3, 4]. Dynamic Programming (DP) is a 
technique which addresses the problems which arise 
in situations where decisions are taken by steps, and 
the result of each decision is partially foreseeable 
before the remaining decisions are taken. An 
important aspect to consider in DP is the fact that the 
decisions cannot be made separately [22]. For 
example, within the SCN the desire to obtain a 
reduced cost in the present must be balanced against 
the desire to induce low costs in the future. This 
constitutes a Credit Assignment Problem since one 
must give credit or culpability to each decision. For an 
optimal planning, it is necessary to have an effective 

compromise between the immediate costs and the 
future costs. More precisely, Dynamic Programming 
focuses on the question: How can a system learn to 
sacrifice its short-term performance to improve its 
long-term performance? To answer this, DP relies on 
the application of the Bellman’s principle of 
optimality defined as follows: An optimal strategy p* 
is such as, whatever the initial state x (0) = i and the 
initial decision, the remaining decisions must 
constitute an optimal sub-strategy, with regard to the 
state resulting from the first decision. In other words, 
an optimal strategy p* can be constituted only of 
optimal sub-strategies: 
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where K is the horizon in time (or steps number). 

The Bellman equation presented below permits 
finding the optimal value function to solve the 
Markov Decision process [20]:  

In other words, the global optimization of the 
objective function is replaced by a sequential 
optimization that consists in optimizing each stage of 
decision (or period), one after the other, but by taking 
into account the former decisions which were made 
previously and the remaining decisions [9]. 

Reinforcement Learning (RL) extends the ideas 
of the DP to treat more complete and ambitious goals 
of Artificial Intelligence (AI). Reinforcement 
learning, instead of being like DP based only on the 
resolution of the problems of optimal control, is an 
aggregate of ideas from psychology, statistics, 
cognitive science and computer science [12]. To 
compute the optimal strategy, DP assumes perfect 
knowledge of the environment model (e.g. transition 
probabilities between the states of the environment 
and the costs (rewards/punishments) which the agent 
receives from this environment). The first question 
addressed by the DP was how to compute the optimal 
strategy with the minimum data-processing 
computation, by supposing that the environment can 
be perfectly simulated, without the need for direct 
interaction with it. The new trend in the methods of 
RL is the assumption of a limited (or even the absence 
of) knowledge about the environment model at the 
beginning and the prediction of rewards/punishments. 
Moreover, instead of moving in a mental model 
internal space, the agent must act in the real world and 
observe the consequences of its actions. In this case, 
we are interested in the number of real world actions 
the agent must carry out to move towards an optimal 
strategy, rather than with the number of algorithmic 
iterations necessary to find this optimal strategy. The 
Bellman´s equation makes it possible to define an 
optimal strategy [16]. The systems which learn while 
interacting with a real environment and by observing 
their results are called online systems. On the other 
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hand, the systems which learn separately, without 
interacting with a real environment and with an 
internal model of this environment are called off-line 
systems. In this work we are developing the SCN 
model as an on-line system. 
3. Results 

Reinforcement Learning answers the question: 
how to make the mapping between the states (of an 
environment whose model is not known entirely) and 
the actions of an agent (which interacts with this 
environment online) so as to maximize/minimize a 
numerical signal of reward/punishment? In other 
words, within the context of the SCN this permits 
looking for the optimality of local decisions under the 
constraints of the optimal behavior of the whole SCN. 
The fact of learning by trial and error, and of having a 
delayed reward/punishment which will affect the 
future behavior of the agent are the two most 
important characteristics which differentiate it from 
other types of learning methods. A dilemma which 
arises in the field of RL and not necessarily with other 
types of learning is the trade-off which exists between 
the exploitation phase and the exploration phase. The 
agent must exploit the knowledge obtained until now 
to select the actions which brought it a high reward. 
But, at the same time, it must explore all the possible 
actions in its current state, in order to select an action 
which can bring it a higher reward than the actions 
carried out in the past. This dilemma has been studied 
by several mathematicians [12].  

One of the most important advances in the field 
of RL was the development of Q-learning [28], an 
algorithm which follows an off-line strategy [12]. In 
this case, the value-action function learned, Q, 
approximates the optimal value-action function Q* in 
a way independent of the strategy followed. In state x 
(t), if the Q-values represent the environment model in 
an exact way, the best action will be that which has 
the most/less important value (according to the case) 
among all possible actions. The Q-values are learned 
by using an update rule which uses a reward r (t+1) 
calculated by the environment and a function of Q-
values of the reachable states by taking the action ax 
(t) in state x (t). The update rule of Q-learning is 
defined by: 

The term "supply chain" has been used since the 
1980s to describe the whole spectrum of operations in 
almost every manufacturing industry; from purchasing 
of raw material, through transformation production 
processes, to distribution of the finished inventory to 
customers. As the complexity increases a supply chain 
is well depicted as a network of suppliers, 
manufacturers and customers. This work proposes a 
model of the SCN in the framework of the COIN 
theory. As defined in [8], SCN members are believed 
to have common functions. These common functions 

are handling of incoming and outgoing flows, flow 
transformation and control. Materials in the SCN are 
represented as objects forming part of the 
environment. Therefore, every agent can change or 
influence these environment objects. The details of the 
objects are stored as attributes. In our approach, an 
agent can represent any member of the SCN. Each 
agent has a local utility function and handles a Q-
table, which contains perceived information about the 
environment (both environment objects and neighbor 
agents). This generic scheme can be applied both to 
the members of the SCN and to the components of 
each member depending on the necessary level of 
decomposition. A network of agents represents the 
entire SCN. This representation enables dynamic SCN 
simulation within the COIN framework. 

The relationships between the agents in the SCN 
are defined by: R= {r1, r2, r3,...}. Agents known to the 
current agent form the list of his neighbors: N= {n1, 
n2, n3,...}. In the case of the linear model, only agents 
from the nearest tier are included in this list. For each 
neighbor agent the following parameters are 
considered: a) its relationship to the current agent 
(customer, supplier), b) the nature of the agreement 
that governs the interaction (production guarantees) 
and c) the inter-agent information access rights (the 
agent's local state to be considered during the 
decision-making process).  

The priorities of every agent are represented by 
Q= {q1, q2, q3,...}. These priorities can help in 
sequencing incoming messages for processing. 

 The local utility function (LUF) is 
represented as the Q-learning equation (2). 

 The set of control elements: C= {c1, c2, 
c3,...}. A control element is invoked when there is a 
decision to be made while processing a message. For 
example, in order to determine the next destination in 
the transport of materials, a routing-control algorithm 
would be utilized. 

 Every agent has a message handler that is 
responsible for sending and receiving different 
messages to facilitate communication among the 
agents. 

To address the SCN optimization problem, the 
adaptation of the Q-neural algorithm [21] is proposed 
and described. The behavior of the Q-neural was 
inspired by the Q-routing algorithm operation [15], 
the theory of CO IN, including the algorithms based 
on the behavior of the colonies of ants. The learning is 
done at two levels: initially, at the agent’s level locally 
updating the Q-values by using a RL rule, then, 
globally at system level by the utility function’s 
adjustment. The control messages allow updating 
knowledge of the SCN entities by updating the Q-
values, which are approximated by using a function 
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approximate (look-up table, neural network, etc.). In 
Q-neural, there are 5 types of control messages: 

 An 'environment-message' (flag-ret=1) 
generated by an intermediate PA after the reception of 
a raw material if the interval of time w has already 
passed. 

 An 'ant-message' (flag-ret=2) generated by 
the DWA according to the interval of time w ants 
when a final product arrives at the warehouse. 

 An 'update-message' (flag-ret=3) generated 
in the planning phase every e update seconds to ask 
the neighboring PA their estimates about the 
operations of the product. 

When an environment-message arrives at the 
DWA, an ant is sent in return if the period of time w-
ants has already passed. This ant exchanges the 
statistics obtained on its way and it allows the 
environment information communication among the 
agents. When it arrives at the storage of raw materials, 
it dies. The ant updates the Q-value of each PA 
through which the raw material passed before arriving 
at the DWA. In some cases, different agents from the 
same tier can have the same best estimate (prefer the 
same route). If they act in a greedy way, congestion 
occurs in the queue. To avoid congestions, an agent 
must sacrifice its individual utility and to use another 
route. In order to address this problem a punishment 
algorithm is developed forcing an agent who receives 
a punishment message to calculate the second best 
estimate. 

 
Conclusion 

Today's challenge is to optimize the overall 
business performance of the modern enterprise. In 
general, the limitations of traditional approaches to 
solving the problem of dynamic global optimization 
of the SCN are due to the fact that these models do not 
correspond to the reality because of incomplete 
information, complex dynamic interactions between 
the elements, or the need for centralization of control 
and information. Most of heuristic techniques on the 
other hand, do not guarantee the overall system 
optimization. COIN optimization algorithm described 
above is implemented within a more general multi-
agent framework for supply chain modeling and 
optimization. This framework represents complex 
dynamic interactions among supply chain members, 
accounts for demand uncertainty, validates and if 
necessary allows modification of configuration, 
optimization and coordination results. It can be used 
to improve decision-making within a wide range of 
problems in various supply chain scenarios. The 
relevant decisions can be classified into three 
categories: strategic, operating, and control. Strategic 
decisions such as selecting the supply chain 
participant have long-term significance. Operating 

decisions refer to decisions about production to meet 
demand. Finally, control decisions are concerned with 
problems in execution. This can be classified as 
disruption management (like situations when a certain 
machine in the shop floor fails). Though being more 
oriented on the solution of the second type problems, 
the framework can handle the other categories as well. 
In the case study we show how simulation results can 
be used for the SCN configuring based on the 
performance analysis. On the other hand, the 
algorithm of dynamic optimization suits well for just-
in-time decision making. At the stage of SC template 
configuration a user can specify three types of 
parameters: (i) define operational parameters and 
specifications, (ii) determine structural requirements 
to the SC, and finally (iii) define performance goals. 
Operational parameters include inventory control 
policies, production capacities, order lead-time, etc. 
For a selected type of a supply chain, the historical 
production data and BOM information can be 
obtained from the ERP system (at the moment the 
interface to the Excel based MRP is implemented). 
All the products composing a demand are broken 
down to their component parts according to the BOM. 
Demand parameters for each component are obtained 
as a result of the forecasting based on estimation of 
the patterns from the historical data. We use 
perceptual forecasting module from the Fuzzy 
Toolbox Library developed by the authors for time 
series analysis. 
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