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1. Introduction 

The problem of pricing a discrete barrier option 
plays a role in the quantitative finance and financial 
industry. Barrier options are usually traded as the 
modification of simple European puts and call 
options. Barrier options activated (knock-ins) or 
terminated (knock-outs) if the sample path of the 
underlying asset has crossed a predetermined barrier 
prior to the exercise time. There are several pricing 
formulaes for barrier options in the Black-Scholes 
framework (see, Plesser 2000; Geman & Yor 1996; 
Rich 1994). In practice, barrier options differ from 
those studied in the academic literature in many 
respects. One of the most important is the monitoring 
frequency of the underlying assets. In the case of 
discrete monitoring, the sample path of the underlying 
asset is monitored at fixed times. Heynen & Kat 
(1995) were probably the scholars who issued an 
article noticing the discrepancy between option price 
under continuous and discrete monitoring. After 
seminal work of Heynen & Kat (1995), several 
authors proposed approximations based on a variety 
of different numerical approaches (see, Ait-sahlia & 
Lai, 1997; Bertoldi & Bianchetti, 2003; and Broadie 
& Glasserman, 1997). They used several methods 
such as: Recursive integration method, monte 
carlosimulation and trinomial tree. In the numerical 
approaches, computational cost increases whenever 
the number of monitoring increases. Moreover, the 
accuracy of the approximated solution decreases 
whenever asset price and the barrier are close to each 
other, in some sense. To overcome such difficulties, 
Fusai et al. (2006) provided an analytical method for 

the problem of pricing a discrete barrier option under 
time invariant framework. 

For the problem of pricing a discrete barrier 
option under time-dependent framework (time-
dependent parameters) the above findings are not 
valid anymore. More precisely, the problem of pricing 
a barrier option with time-dependent parameters is not 
a trivial extension of time invariant model. Roberts & 
Shorthland (1997) applied the hazard rate tangent 
approximation method to evaluate upper and lower 
bounds for price of such time-dependent barrier 
option. Unfortunately, their bounds cannot state in the 
closed form and consequently cannot be improved. Lo 
et al. (2003) presented a simple approach for 
computing upper and lower bounds (in the close form) 
for the price of a barrier option.  

This article considers the problem of pricing a 
down-and-out discrete barrier options on a divided 
paying equity whenever the risk-free rate and the 
dividend yield in the Black-Scholes partial differ- 
essential equation are deterministic functions of time. 
A method of reducing time-dependent partial 
differential equation to the heat equation is described 
in Wilmott et al. (1999). Also Marianito & Rogemar 
(2006) outlined a procedure that transforms the Black-
Scholes partial differential equation with time-
dependant parameters into the Black-Scholes equation 
with time-independent parameters. Our approach is to 
reduce the pricing problem to the time-independent 
case and the solution to the latter equation provided 
by Fusai et al. (2006). 
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Section 2 collects some useful elements for the other 
sections. Section 3 provides the price of discrete 
barrier option under the time-dependent parameters. 
The price of the Greeks of contract along with two 
examples are given in Section 3. 

 
2. Material and Methods  

Now, we collect some essential elements for the 

next sections. Suppose 0 1 N0 = t  < t  < ... < t = T
 

be the monitoring dates that take at necessarily 

equally-spaced points in time, T  the option maturity, 
the L the constant lower barrier which is active at all 

times tn and K  is the strick price of the option. The 

nth time interval is defined as n n+1t  < t < t
. We are 

interested in pricing a down-and-out call option, i.e., a 

call option that expires worthless if a lower barrier has 

been hit at monitoring date. We denote V (S, t, n) is 
the price of a down and-out barrier option on a 
dividend-paying equity at time t in the nth time 

interval and the asset price S . The asset price S  
satisfies the following stochastic differential equation. 

dS
=(r(t)-d(t))+ dB 

S


 
with the constant volatility  , the risk-free rate 

 r t
and the dividend yield 

 d t
, then it is well 

known (see, Merton (1973)) that V (S, t, n)  
satisfies following partial differential equation: 

 

     
2 2

2

2

V (S, t, n) V (S, t, n) V (S, t, n)
+ S r t - d t S r t V (S, t, n)=0

2t S S

  
        (1) 

 
Given that the trigger condition is checked only 

at fixed times, it is needed to update the initial 

condition at each of the monitoring dates nt
: 

n n (S L)V (S, t , n) = V (S, t , n - 1)I , (2) 

0 (S max{K,L})V (S, t , 0) = (S - K)I .   (3) 

Now, suppose V (S, t, n)  denotes the price of 
a down-and-out barrier option on a non dividend- 

paying equity at time t and asset price S  with the 

monitoring dates 0 1 N0 = t  < t  < ... < t = T  that 
take at necessarily equally-spaced points in time and 

option maturity T  and the constant lower barrier L  

and the strick price K . The asset price S  satisfies the 
following geometric Brownian motion process. 

c

dS
=r  

S
cdt dB

 

with the constant volatility c
 and the constant 

risk-free rate cr , then V (S, t, n) satisfies Black-
Scholes partial differential equation: 

 
22 2

2

SV (S, t, n) V (S, t, n) V (S, t, n)
+ S V (S, t, n)

2
c

c cr r
t S S

  
  

       (4) 
As before if the trigger conditions update at the monitoring dates, then, we have: 

n n (S L)
V (S, t , n) = V (S, t , n - 1)I

         (5) 

0 (S max{K,L})
V (S, t , 0) = (S - K)I

          (6)  
 
Fusai et al., (2006) provided an analytical 

approach to evaluate nV (S, t , n)
 under the partial 

differential Equation (4) with boundary conditions (5) 
and (6). The following provides definition of some 

auxiliary functions that are used in the formulation of 

Fusai et al. (2006). For the asset price S  the function 

BSC (S) 
is defined as follows: 

 

           c c-r -r

BS 1 2 0, ,0
C (S)= S N d -Ke N d  I k S -Ke I kn nt t

 
   
    , 
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in which 
2

0

1 2 1 0

0

s
ln( ) ( )( )

k2kd  = ;d d ; ln( ),
L

c
c n

c n

c n

r t t
t t k

t t






  
   


 

And the complex coefficients n
 is defined as below: 

n ln 2 , ,q n i n   
 

in which q  must satisfy the following condition: 

     2 2

1 0
exp 1 ,q I

 
 

 
 

 
where 

2

1 02
2 ; ;

2

c
c

c
n

c

r
t t


 

  





    

. 
Also the functions L+(u) and ˘ F (z, q) are respectively defined as follows: 

 2

+ 2 2

0

ln 1u
L (u)=exp( ), ( ) 0,

zqe
dz u

i z u


 


 

 

(1- )k + +
( 0)

n=- n=-

+
( 0)

n=- + +

L ( )e L ( )e-iL
F(z,q)= e

4 ( )( ( 1) ( ))

L ( )eL 1
( .

2 L ( )( ) L ( ( 1) )( ( 1) )

n n

n

z z
i i

n n
k

n m m m m n

z
i

k
n

k

n n n

I
i i

e
I

i i i i

 
 






 

        



        

 


 





   

 
   

 

 



 
The general price of down-and-out discrete barrier option under the partial differential Equation (4) with 

boundary conditions ( 5) and (6) is stated in the following theorem. 
Theorem 1. (Fusai et al., 2006): Consider partial differential Equation (4) with boundary conditions (5) and 

(6). Then, 
(i) The price of down-and-out discrete barrier option at a monitoring date tn and asset price S is given by 

nt
n BS

S S
V (S, t , n)=C (S)( ) (ln , ),

L L
e f n 


       (7)  

where f


and   is defined as follows 
2

0

1
( , ) ( , ) ,

2
iu inu

n
f z n F z e e du






 
 

 
2

2

2
c

cm r


    
 

(ii) The Greeks of the contract, namely Delta, 

nV (S, t , n)

S



 , and Gamma, 

2
n

2

V (S, t , n)

S



  
are obtained as below 

11 ( , )
( ) ( ) ( , ) ,nt

BS

S f z n
S e f z n

L zL

   
     

 




     (8)  
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With 
z = ln( )

S

L and where    1 0, - ,0
( )= N(d )I (k) + I (k)BS S

 


  
2

2

2 2

1 ( , ) ( , )
( ) ( ) ( 1) ( , ) (2 1) ,nt

BS

S f z n f z n
S e f z n

z zLL

      
        

  

 


 (9)  

where 
( )BS S

 is the Black-Scholes Gamma. 
 
The corresponding down-and-in call option can 

be priced by subtracting from the price of standard 
call the price of the down-and-out call. Likewise, the 
barrier put option can be priced using the put call 
transformation given in Haug (1999). 

Now consider, the problem of pricing the down-
and-out discrete barrier option under the partial 
differential Equation (1), i.e., the problem of 

evaluating nV (S, t , n)
under the partial differential 

Equation (1) with conditions (2) and (3). The next 
section provides an analytic solution for such 
problem. 

 

3. Results  
This section provides an exact and analytic 

solution for the problem of pricing the down-and-out 
discrete barrier option under time-dependent 
framework. The following theorem provides the main 
result of this article. 

Theorem 2. Suppose V (S, t, n)  represents 
the price of down-and-out barrier option at the 

monitoring date nt
and the asset price S  which 

satisfies the partial differential Equation (1) and 
conditions (2) and (3). Then, 

nt 2

nn 2

0

K
V (S, t , n)= exp( ( ) ) V (S, t , n),

K
c

c

r r u du




 
  

 


    (10)  

where nV (S, t , n) is the price of discrete barrier option that is calculated based upon Theorem 1. The above 

nV (S, t , n) with strick price K and lower barrier L  and option maturity T that satisfy three following 
conditions. 

max ,1 max ,1
L L

KK

   
   

          (11) 
nt 2

2

0

exp( ( ) ( ) )c

c

L L
r u d u r du

KK





 
   

 


      (12)  
2

2
c

T T





          (13)  

Also, nt and S in the Equation (10) are calculated as follows: 
2

n n 2
t t

c






         (14)  
nt 2

2

0

exp( ( ) ( ) )c

c

K
S r u d u r du S

K





 
    

 


     (15)  
Proof. In the first step, we transform the Black-Scholes equation with the time-varying parameters (1) into 

Black-Scholes equation (4) such that: 

t 0 when t 0          (16) 
To observe this, we use the following transformations: 
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nV (S, t, n)=h(t)V (S, t , n) , S ( )S , t ( )tt t      (17) 
Using the chain rule, one may conclude that: 

V V V
=h(t) ( ) ( ) h (t)V

t S t
t S t 

   
    

     

V V
=h(t) ( ) ,

S S
t

 

   
2 2

2

22

V V
=h(t) ( ) ,

S S
t

 

   
Substituting the above equations into (1) leads to: 

  2 2 2 2

2

( ) ( ) ( ) ( )V V ( ) V h (t)+r(t)h(t)
+( ) +( ) ( )V 0

t ( ) 2 ( ) h(t) ( )S S

r t d t t S t S S t

t t t

   

  

    
  

      
Comparing this with Equation (4) yields: 

2 2 2 2
2 ( )
=

2 2 ( )
c c S t

S
t

  

 
 (18) 

 ( ) ( ) ( ) ( )
=

( )
c

r t d t t S t S
r S

t

 



 


       (19) 

( ) ( ) ( )
=

( ) ( )
c

h t r t h t
r

h t t

 


         (20) 

From Equation (17) to (20), one may conclude that: 

2

2

0

1
( )= ( )

t

c

t d u A 



         (21) 

 
0

( )= exp ( ) ( ) ( ) ,
t

ct r u d u r u du    
       (22) 

 
0

( )= exp ( ) ( ) ,
t

ch t C r u r u du  
        (23) 

 

where A , B , and C  are constant. 
Up to now, the Black-Scholes equation with 

time-varying parameters (1) is transformed into 
Black-Scholes partial differential equation (4). As 

mentioned before, nV (S, t , n) with the two 
conditions (5), (6) can be evaluated based on Theorem 

1. Therefore, the constants A , B , and C are 

determined and also some conditions on L , K are 
given simultaneously such that conditions (5), (6) 
equivalent to the (2) and (3). 

Finally, V (S, t, n) under the partial 
differential equations (1) with conditions (2) and (3) is 

evaluated with the first equation in (17). 
From (3), (17) and (6) we have: 

 
+

[max{K,L}, ) 0

0 0

0 [max{K,L}, )

(S - K) I (S) = V (S, t , 0)

 h(t )V (S, t , 0)

 h(t )(S ) I (S)K









 
 

But 
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0

+
0 [max{K,L}, ) 0 0 0[max{K,L}, )

0 0 max{K,L}
[ , )

0 (t )

h(t )(S - K) I (S) = h(t )( (t )S- ) I ( (t )S)

 h(t ) (t ) (S- ) I (S)
(t )

K

K



 





 







 
Therefore 
 

0

0 0 [max{K,L}, ) max{K,L}
[ , )

0 (t )

h(t ) (t ) =1 , , I (S) I (S)
( )

K
K

t



 



 

     (24) 
Using Equations (16) to (24), one may conclude that: 

0( ) 0A t 
          (25) 

0( )
K

B t
K

 
          (26) 

0( )
K

C h t
K

 
          (27) 

max{K,L} max{K,L}

K K


         (28) 

Multiplying the both side of equation (5) by 
( )nh t

leads to 

n n [L, )
V (S, t , n) = V (S, t , n - 1)I (S) 

        (29) 

Equations (29) and (2) are equivalent, whenever the following conditions on L and K are exist. 

[L, )[L, )
I (S) =I (S)   

Therefore, L and K are chosen so that (S  L)  equivalent (S  L) . Then, with equations (17), (22) and 
(25) it is sufficient to have 

nt 2

2

0

exp ( ) ( ) c

c

L L
r u d u r du

KK





 
   

 


       (30) 

Also we must aware of accuracy of the (S  L) , then L  and K is chosen as following 
nt 2

2

0

exp ( ) ( ) c

c

L S
r u d u r du

KK





 
   

 


       (31) 
 
This observation complete the proof.  
It would be worthwhile to mention: (i) two 

constant parameters cr and 
2

, given in Theorem 2, 
respectively, are arbitrary risk-free and volatility in 
the Black-Scholes partial differential Equation (4); (ii) 
There is a fixed period between the monitoring dates 

nt  that is driven in the theorem 2. If the volatility is 
non-constant function of time then the period between 

monitoring dates nt
may be not fixed and the 

Theorem 1 is unusable in this place. 
The following evaluates the Greeks of contract. 

Corollary 1. The Greeks of the contract, namely Delta

nV (S, t , n)

S



  and Gamma, 

2
n

2

V (S, t , n)

S



 , under 
the Black-Scholes equation with time-varying parameters (1) with conditions (2), (3) are obtained as follows: 

n nt t2 2
n

2 2

0 0

V (S, t , n)
exp ( ) exp ( ) ( )c c

c c

r r u du r u d u r du
S

 

 

    
         

   
 

   (32) 
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n nt t2 2 2
n2

22 2

0 0

V (S, t , n)
exp ( ) (exp ( ) ( ) )c c

c c

K
r r u du r u d u r du

K S

 

 

    
         

   
 

  (33) 

where 

nV (S, t , n)

S



 and 

nV (S, t , n)

S



  are evaluated according to the Theorem 1(ii). 
 
Proof. Desire proof arrives by derivation with 

respect to S  from Equation (10) and (15).  
The following proves that the price of discrete 

barrier option and the Greeks of the contract are 

invariant from choosing L and K in Theorem 2. 

Corollary 2. For the given lower barrier L and 

the stirk price K , there may exist many of the L and 

K such that satisfy conditions (11), (12). But the 
price of discrete barrier option and the Greeks of the 
contract that respectively evaluate based on (10), (32) 

and (33) are independent of different choices for L

and K . 
Proof. We just prove the corollary for the price 

of barrier option, the result for the Greeks 
consequentis immediate. Without less of generality 

suppose that L K . By replacing the formulae with 

nV (S, t , n)  given by the Theorem 1 into Theorem 
2, one may observe. 

 

n

1 2

V (S, t , n) ( ) ( ) (ln , )

( ) ( ) ( ) (ln , )

n

nc n

t

BS

r t t

K S S
C S e f n

K L L

S K S S
K N d Ke N d e f n

K K L L





 
  

 

  





 
Now using Equation (15), the last expression can be restated as: 

*
* 1 * n

n 1 2 n

(t )1 1
(t ) ( ) ( ) ( ) ( (t ) ) ( ) (ln ln , )nc nr t tK K

K SN d Ke N d S e f S n
K KK L L

   
    



 (34) 
where 

nt 2
*

n 2

0

(t ) exp ( ) ( ) c

c

r u d u r du





 
   

 


 
 

The function ( , )f z q


 that was defined 

previously has lower barrier L  as coefficient. Then, 

the last equation depend on L and K only from the 

proportion 

L

K . This fact completes the desire proof.  
The following examples provide application of 

the above results to the problem of pricing a discrete 
barrier option and the Greeks of the contract for the 

different cases of r(t)  and d(t) . 
Example 1. Suppose, we want to price down-

and-out barrier option. Parameters used are S=100 , 

K=100 , r(t) = 0.1+0.05 exp(-t) , d(t) 0.05 , 

=0.2 , T = 0.5 . Also the arbitrary parameters in 
the transformed partial differential equation are 

cr 0.1
, 

=0.3c
. The price of the barrier option 

and the Greeks of the contract at the last monitoring 

date are evaluated for the different lower barriers L  

and the different monitoring numbers N . Results are 
summarized in Table 1. In this example for lower 

barrier greater than (97) there are no L  and K  such 
that satisfy conditions (11) and (12). 
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Table 1: In this table for the different levels of the lower barrier, we chose L  and K suitably, and then the price of 
discrete barrier options is evaluated based on Theorem 2 

N  L  V      
5 88 7.6920 0.6515 0.0222 
5 91 7.4905 0.6836 0.0188 
5 94 7.0023 0.7375 0.0189 
5 97 6.0966 0.7859 0.0403 
15 88 7.6307 0.6622 0.0204 
15 91 7.3110 0.7124 0.0132 
15 94 6.5459 0.8121 0.0041 
15 97 5.0815 0.9251 0.0266 

 
Example 2. Consider the problem of pricing 

under S=100 , K=100 , r(t) = 0.075+0.05 t , 

d(t) 0.03+0.02t , =0.3 , T = 0.2 . Also the 

arbitrary parameters cr and c
are given as previous 

example. The price of the barrier option and the 

Greeks of the contract at the last monitoring date are 

evaluated for the different lower barriers L and the 

different monitoring numbers N . Results are 
summarized in Table 2. 

 

Table 2: In this table for the different levels of the lower barrier, we chose L  and K suitably and then the price of 
discrete barrier options are evaluated based on theorem 2 

N  L  V      
5 87 5.7588 0.5562 0.0281 
5 91 5.6456 0.5780 0.0249 
5 95 5.1946 0.6315 0.0253 
5 99 4.1134 0.8681 -0.7255 
10 87 5.7489 0.5583 0.0277 
10 91 5.5871 0.5896 0.0221 
10 95 4.9358 0.6804 0.0175 
10 99 3.4266 0.7254 -0.4748 

 
4. Discussions  

This article studies the pricing of discrete barrier 

options under a model where the risk-free rate, r(t) , 

and the dividend yield, d(t) , are two given the 

functions of time. For non-constant volatility (t)  , 
one may use the average volatility. Then, apply 
findings of this article to such problem. Also, if the 
problem of option pricing can be solved when the 
monitoring dates take at not necessarily equally-
spaced point, then the approach of the present paper is 
usable for the non-constant volatility too. 
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