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Abstract: This paper examined the power rate exhibit by some heteroscedasticity detection methods in a linear 
regression model with multicollinearity problem. Violation of unequal error variance assumption in any linear 
regression model leads to the problem of heteroscedasticity, while violation of the assumption of non linear 
dependency between the exogenous variables leads to multicollinearity problem. Whenever these two problems 
exist one would faced with estimation and hypothesis problem. in order to overcome these hurdles, one needs to 
determine the best method of heteroscedasticity detection in other to avoid taking a wrong decision under hypothesis 
testing. This then leads us to the way and manner to determine the best heteroscedasticity detection method in a 
linear regression model with multicollinearity problem via power rate. In practices, variance of error terms are 
unequal and unknown in nature, but there is need to determine the presence or absence of this problem that do exist 
in unknown error term as a preliminary diagnosis on the set of data we are to analyze or perform hypothesis testing 
on. Although, there are several forms of heteroscedasticity and several detection methods of heteroscedasticity, but 
for any researcher to arrive at a reasonable and correct decision, best and consistent performed methods of 
heteroscedasticity detection under any forms or structured of heteroscedasticity must be determined. This paper then 
consider seven (7) heteroscedasticity structures that were originally proposed by different authors for developing 
statistical tools for heteroscedasticity detection in linear regression model. Also, nine (9) heteroscedasticity detection 
methods were examine to determines some methods that are best to be used in determining the presence of 
heteroscedasticity in a linear regression model with multicollinearity problem consideration was placed on power 
rate exhibit by each of the heteroscedasticity detection method. In this work, Monte Carlo experiment was 
conducted one thousands (1000) times on a linear regression model with three predictor variable that exhibits some 

degree of multicollinearity )999.0,99.0,95.0,9.0,8.0(  , seven sample sizes 

)250100,50,30,20,15( andn  . The parameters of the model were specified to be
40 

, 4.01  , 

5.12 
, 

6.33 
 and the various tests were examined at 0.1, 0.05 and 0.01 levels of significance. The 

Confident interval criterion (C.I) was used to determine the performances of the methods. The study concluded that 
when power rate of a test is considered to determine the preferred heteroscedasticity detection method (s) in a model 
with multicollinearity problem; at significance level of α = 0.1 and 0.05, BG test or GFQ test are the preferred 
methods at all levels of multicollinearity, while at α = 0.01, the preferred method to use in testing for the presence of 

heteroscedasticity is either BG or NVST at all levels of multicollinearity except when ,95.0  at these instances 
ST compete favourably well with BG and NVST.  
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1. Introduction  

Heteroscedasticity cause serious problems in 
econometrics data. The consequences of using 
Ordinary Least Square (OLS) estimator when there is 
heteroscedasticity also affects the population 
parameters that leads to unbiasedness but inefficient, 

biased variance estimates and invalid hypothesis. 
Given this fact, the detection of heteroscedasticity in a 
linear regression model needs to be identified. Alabi et 
al (2008), opined that the effect of multicollinearity on 
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type I error rates of the ordinary least square estimator 
is trivial in which the error rates exhibit no or little 
significance difference from the pre-selected level of 
significance. This paper attempts to determine the 
preferred heteroscedasticity detection methods via 
power rate among some methods of detecting 
heteroscedasticity in linear regression model when 
there is no multicollinearity problem in the linear 
regression model while evaluating a computationally 
simple asymptotic test that was proposed by Spearman 
(1904), Rao (1948), Goldfeld and Quandt (1965), 
Breusch and Godfrey (1966), Park (1966), Glejser 
(1969), Breusch and Pagan (1979), Harrison and 
McCabe (1979) and White (1980). These tests, 
originally designed for structural form and methods of 
detecting heteroscedasticity with various sample sizes 
under appropriate assumptions. These were used to 
test for the presence or absence of heteroscedasticity 
in linear regression models without multicollinearity 
problem. 
1.2. Preview On The Methods Of Detecting 
Heteroscedasticity  

There are several existing methods for detecting 
the existence of heteroscedasticity in linear regression 
model. This paper considered nine existing methods of 
heteroscedasticity detection, the methods are:  
2-1 Breush-Pagan test (BP) 

Breusch and pagan (1979) developed a test used 
in examining the presence of heteroscedasticity in a 
linear regression model. The variance of the error term 
was tested from a regression and is dependent on the 
value of the independent variables. Bresuch-Pagan 
illustrates this test by considering the following:  

In linear regresson model, multiple regressions 
assess relationship between one dependent variable 
and a set of independent variables. Ordinary Least 
Squares (OLS) Estimator is most popularly used to 
estimate the parameters of regression model. The 
estimator has some very attractive statistical properties 
which have made it one of the most powerful and 
popular estimators of regression model. A common 
violation in the assumption of classical linear 
regression model is the presence of heteroscedasticity. 
Heteroscedasticity is a situation that arises when the 
variance of the error term is not constant. The 
performance of OLS estimator is inefficient in the 
presence of heteroscedasticity even though it is still 
unbiased. It does not have minimum variance any 
longer (Gujarati, 2003). In literature, there are various 
methods existing in detecting heteroscedasticity. 
Among them is the Breush-Pagan test. Breusch and 
pagan (1979) developed a test used in examining the 
prescence of heteroskedasticity in a linear regression 
model. The variance of the error term was tested from 
a regression and is dependent on the value of the 

independent variables. Bresuch-pagan illustrates this 
test by considering the following regression model  

uXY  110 
   (3) 

Suppose that we estimate the regression model 
and obtain from this fitted model a set of value for the 
residuals û, OLS constrains these so that their mean is 
0 and give the assumption that their variance does 
depend on the independent variables, an estimate of 
this variance can be obtained from the average of the 
squared values of the residuals. If the assumption is 
not held to be true, a simple model might be that the 
variance is linearly related to independent variable. 
Such a model can be examined by regressing the 
squared residuals on the independent variable, using 
an auxiliary regression equation of the form. z

vXu  10
2ˆ 

    (4) 
Bruesch-pagan test is a chi-square test; the test statistic 
is distributed with nχ�with k degrees of freedom. If 
the test statistic has a p-value below an appropriate 
threshold e.g p < 0.05 then the null hypothesis of 
homoscedasticity is rejected and heteroscedasticity 
assumed. The procedure under the classical 
assumptions, OLS is the best linear unbiased estimate 
(BLUE), i.e, it is unbiased and efficient. It remains 
unbiased under heteroscedasticity, but efficiency is 
lost. Before deciding upon an estimation method, one 
may conduct the Bruesch-pagan test to examine the 
presence of heteroscedasticity. The Breusch-pagan test 
is based on model of the type 

)(2  izh 
    (5) 

For the variance of the observations where 

),...,1( 2 piii zzz 
 explain the difference in the 

variances. The null hypothesis is equivalent to the (p-
1) parameter restriction: 

 p  ...2    (6) 
For Breusch-pagan test large range multiplier 

(LM) yields the test statistic. 
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This test is analogous to follow the simple three-

step procedure: 
Step1:  Apply OLS in the model 

  XY     (8) 
And compute the regression residuals. 
Step2: Perform the auxiliary regression 

 ipipii zyzyy   ...221
2

   
(9) 

Where z could be partly replaced by independent 
variable X 
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Step 3: The test statistic is the result of the 
coefficient of determination of the auxiliary regression 
in step 2 and sample size n with LM = nR2. The test 

statistic is asymptotically distributed as 1p
 under 

the null hypothesis of homoscedasticity. Finally, we 
assume to reject the null hypothesis and to highlight 
the presence of heteroscedasticity when LM-statistic is 
higher than the critical value. 
2-2 Park Test (PT) 

Park (1966) propose a LM test, the test assumes 
the proportionality between error variance and the 
square of the regressors. According to Gujarati, the 
Park LM test formulizes the graphical method by 

suggesting that 
2  is a particular function of the 

explanatory variable iX
. 

Park illustrates this test by regressing the natural 
log of squared residuals against the independent 
variable, if the independent variable has a significant 
coefficient, the data is likely to be heteroscedasticity in 
nature. 

In order to obtain the error ter�	û� , we run a 
regression equation 

ikikii uXXY   ...221   (10) 
2)( iiuVar 

 
by running the auxiliary regression we obtain the 

model below 
v

ii eX  22 
    (11) 

We need to find the log 

iii vX  lnlnln 22 
  (12) 

Where iv
 the stochastic disturbance term, since 

��
� is not known, Park suggest using 

2ˆ
i  as a proxy 

and run the following regression 

iii vX  lnlnln 22 
 

ii vX  ln
   (13) 

If   turns out to be statistically significant, we 
there say that heteroscedasticity is present in the data 
and if it turns out to be insignificant, we may accept 
the assumption of homoscedasticity. 
2-3 Spearman’s Rank Correlation test (ST) 

Spearman’s Rank correlation (1904) assumes 
that the variance of the disturbance term is either 
increasing or decreasing as X increases and there will 
be a correlation between the absolute size of the 
residuals and the size of X in an OLS regression. The 
data on X and the residuals are both ranked. The rank 
correlation coefficient is defined as  

11;
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where id
 is the difference between the rank of X 

and the rank of   in observations. i and n is the 
number of individual ranked. Under the assumption 
that the population correlation coefficient is 0, the rank 
correlation coefficient has a normal distribution with 0 

mean and variance 1 (� − 1)�  in large sample. The 

appropriate test statistic is 
)1(, nrx   and the null 

hypothesis of homoscedasticity will be rejected at the 
5% level if its absolute value is greater than 1.96 and 
at 1% level if its absolute values are greater than 2.58, 
using two tailed tests. The test can be performing with 
any of the levels if the explanatory variable is more 
than one. The preceding rank correlation coefficient 
can be used for heteroscedasticity. We assume the 
following model  

�� = �� + ���� + ��; 	� = 1,2,… , �   (15) 
the following steps are involved in spearman’s 

rank correlation test  
Run the above regression and obtain the residual 

û� and take their absolute values iû
 

Arrange iû
 and iX

 in either increasing order 
or decreasing order and run Spearman’s Rank 
Correlation coefficient by using formula   
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If there is a systematic relationship between iu
 

and iX
, the rank correlation coefficient between the 

two should be statistically significant in which 
heteroscedasticity can be suspected. Given the null 
hypothesis that the true population rank correlation 
coefficient is zero and that n >8, it can be shown that 

21
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 ~ 2nt
 follows student’s t– 

distribution with (n-2) degree of freedom. Therefore, 
in an application the rank correlation coefficient is 
significant on the basis of the t-test, we do not reject 
the hypothesis that there is heteroscedasticity in the 
problem. We therefore reject the null hypothesis of 

heteroscedasticity whenever 	  2,1  no tt  . If there 
are more than one explanatory variable, rank 
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correlation can be computed between | i | and each of 
the explanatory variable separately and be tested using 
to.   
2-4 Glejser test (GLJ) 

 Glejser (1969) developed a test similar to the 
Park test, after obtaining the residual (û� ) from the 
OLS regression. Glejser suggest that regressing the 
absolute value of the estimated residuals on the 
explanatory variables that is thought to be closely 
associated with the heteroscedastic variance and 
attempts to determine whether as the independent 
variable increase in size, the variance of the observed 
dependent variable increases. This is done by 
regressing the error term of the predicted model 
against the independent variable. A high t-statistic (or 
low prob-value) for the estimate coefficient of the 
independent variable (s) would indicate the presence 
of heteroscedasticity. 

Glejser illustrates this test by considering the 
following steps  

Step1: Estimate original regression with 
OLS and find the sample residual ɛi  

Step2: Regress the absolute value | ɛi | on 
the explanatory variable that is associated with 
heteroscedasticity  

Step3: Select the equation with the highest 
R2 and lowest standard errors to represent 
heteroscedasticity  

Step4: Perform a t-test on the equation 
selected from step3 on Yi. If Yi is statistically 
significant, reject the null hypothesis of 
homoscedasticity.  
2-5 Goldfeld-Quandt test (GFQ) 

Goldfeld -Quandt (1965) developed an 
alternative test to LM test, applying this test requires 
to perform a sequence of intermediate stages. First 
step involves to arrange the observations either is 
ascending or in descending order. Another step aims to 
divide the ordered sequence into two equal sub-
sequences by omitting an arbitrary number P of the 
central observation. Consequently, the two equal sub-
sequences will summarize each of them a number of 

2

)( pn 

observations. We then compute two different 
OLS regression the first one for the lowest values of 
Xi and the second for the highest values of Xi, in 
addition, obtain the residual sum of squares (RSS) for 
each regression equation, RSS1 for the lowest values 
of Xi and RSS2 for the highest values of Xi. An F-
statistic is calculated based on the following formula: 

2

1

RSS

RSS
F 

    (17) 

The F-statistics is distributed with 

2

)2( KPN 

 degrees of freedom for both 
numerator and denominator. Subsequently, compare 
the value obtained for the F-statistic with the tabulated 
values of F-critical for the specified number of degrees 
of freedom and a certain confidence level. If F-statistic 
is higher than F-critical, the null hypothesis of 
homoscedasticity is rejected and the presence of 
heteroscedasticity is confirmed. 
2-6 Breusch-Godfrey test (BG) 

 Breusch-Godfrey (1978) developed a LM test of 
the null hypothesis of no heteroscedasticity against 

heteroscedasticity of the form 
)(22  tt zh 

, 

where tz
 is a vector of independent variables. This 

vector contains the regressors from the original least 
square regression. The test is performed by completing 
an auxiliary regression of the squared residuals from 

the original equation on (1, tz
). The test statistic 

follows a chi-square distribution with degrees of 
freedom equal to the number of z under the null 
hypothesis of no heteroscedasticity. 
2-7 White’s test (WT) 

 White (1980) proposed a statistical test that 
establishes whether the variance of the error in a 
regression model is constant. This test is generally, 
unrestricted and widely used for detecting 
heteroscedasticity in the residual from a least square 
regression. Particularly, White test is a test of 
heteroscedasticity in OLS residual. The null 
hypothesis is that there is no heteroscedasticity. The 
procedure for running the test is shows as follows:  

Given the model 

iiii uXXY  33221 
   (18)  

Estimate equation (8) and obtained the residual 
û�  we then run the following auxiliary regression 

iiiiiiii vxXbXbXbXbXbbu  326
2
35

2
2433221

2ˆ

      (19)  
The null hypothesis of homoscedasticity is 

0: 210  mbbbH
where 0H

 highlights 
the fact that the variance of the residual is 

homoscedasticity i.e, 
2)()var(   ii YVar

.  

The alternative hypothesis is 1H
, it aims at the 

fact that the variance of the residual is 

heteroscedasticity 
2)()var( iii YVar  

 that is at 

least one of the 
sbi '  is different from zero, the null 

hypothesis is rejected. The LM-statistic equal to 
2nR , 
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this follows a 
2  distribution characterized by m-1, 

where n is the number of observation established to 

determine the auxiliary regression and 
2R  is the 

coefficient of determination. Finally, we assume to 
reject the null hypothesis and to highlight the presence 
of heteroscedasticity when LM-statistic is higher than 
the critical value. 
2-8 Harrison McCabe test (HM) 

Harrison-McCabe (1979) proposes a test to check 
the heteroscedasticity of the residuals. The breakpoint 
in the variances is set by default to the half of the 
sample. The p-value is estimated-using simulation. If 
the binary quality measure is false, then the 
homoscedasticity hypothesis can be rejected with 
respect to the given level. 
2-9 Non-Constant ariation Score test (NVST) 

Rao (1948), Cox and Hinkley (1974) develop a 
test of null hypothesis 

2
,2,1

2
0 )/(:   kXXXEH

against an 

alternative (
)1H

hypothesis with a general functional 
form.  

We recall the central issue is whether 

iwE 22 )(  
 is related to X and iX

. Then, a 
simple strategy is to use OLS residuals to estimate 
disturbance and check the relationship between ��

� and 

iX
  and 

.2
iX

Suppose that the relationship between 
2  and X is linear 

vX   2
   (20) 

Then, we test 
0:0 H

 against 0:1 H  
and base the test on how the squared OLS residual � 
correlate with X.  

 
3. Materials And Method  

Consider the multiple linear regression model of 
the form: 

tptpttt uXXXY   221110  
(21)  

where,
),0(~ 2

tt Nu 
; tu

 is the error term and 
2
t

 is the heteroscedasticity variance that is 

considered. tY
 is the dependent variable, ptX

 is the 
explanatory variables that contain multicollinearity 

and p  is the regression coefficient of the model. 
A Monte Carlo Experiment was performed 1000 

times, in generating the data for the simulation study. 

on error variance containing heteroscedasticity 
structures considered;  

22
2

22 )( tt X 
    (22)  

)( 2
2

22
tt X 

     (23) 

)( 2
22

tt X 
    (24) 

22  t  2)( tyE
    (25) 

22  t  )( tyE
    (26)  

22
2

22 )1( tt X
   (27) 

 )exp( 3322110
22

tttt XXX     (28) 

where  =0 and 0.2. 
Statistical package R-Studio (5.0) software was 

used to run the simulation aspect of the structures of 
heteroscedasticity to be tested. The best structural 
forms was identified from the result of the simulation. 
3-1Generation of error term  

The error term i was generated to be normally 

distributed with mean zero and variance 
2 , that is, 

),0(~ 2 Ni .     (29) 
The error term containing different explanatory 

variables, heteroscedasticity structure and dependent 
variable were generated. 
3-2 Generation of explanatory variables 

The procedure used by Mansson et al (2010), 
Lukman and Ayinde (2015) and Durogade (2016), was 
adopted to generate explanatory variables in this 
study. This is given as:    

tptiti zzX   *)1( 5.02

   (30)  

where t =1, 2,...,n and ,,,2,1 pi   where tiz
 

is the independent standard normal distribution with 
mean zero and unit variance. Rho (

999.099.0,95.0,9.0,8.0 and ) is the 
correlation levels between any two explanatory 
variables in this study. i.e. the multicollinearity level, 
while p is the number of explanatory variables. 
3-3 Generation of Dependant variables 

The dependent variables was generated, equation 
(21) was used in conducting the Monte Carlo 
experiments. The true values of the model parameters 
were fixed as follows; 

40 
, 4.01  , 5.12  , 

6.33 
. The 

sample sizes varied from 15, 20, 30, 40, 50, 100 and 
250. At a specified value of n, p, the fixed X's  are first 

generated; followed by the tu
, and the values of tY
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were then determined. Then tY
 and X's were then 

treated as real life data set while the methods were 
applied. 
3-4 Estimated significance levels to b e used to 
determine the power rate  

The hypothesis about the methods of detecting 
heteroscedasticity under different forms of 
heteroscedasticity structures was tested at (10%, 5% 
and 1%) levels of significance to examine the power 
rate on the variance of each error terms. Intervals was 
then set for the significance level as follows; The 
interval set for α = 0.1 is (0.09 to 0.14), the interval set 
for α = 0.05 is (0.045 to 0.054), and the interval set for 
α = 0.01 is (0.009 to 0.014). These intervals was set to 
know the number of times each power rate level falls 
between the range set for the confidence interval of 
each method of detecting heteroscedasticity in order to 
reject the hypothesis or not.  
3-5 Sample Sizes 

The sample sizes used for this research work 
were varied from 15, 20, 30, 40, 50, 100 and 250. 

These Sample sizes were classified as small 

)3015(  n , medium )5040(  n  and large 

)250100(  n . 
3-6 Criterion For Comparison 

At a particular α level a confidence interval was 

set for 10 0
0

, 5 0
0

 and 1 0
0

, the number of times α� 
falls in between, the set confidence interval was 
counted over the sample size and heteroscedasticity 
structures.  

The heteroscedasticity test with highest number 
of count is choosen to be the best test with interm of 
power of the test. 

R

r
̂

     (31) 
Where r is the number of times α� falls in between 

the confidence interval set at a particular significance 
level. While R is the number of times the experiment 
was carried out. 

The heteroscedasticity test with highest number 
of count is chosen to be the best. 
3-7 Power Of Statistical Test 

Statistical Power of a test can be define as the 
probability of rejecting null hypothesis given that null 
hypothesis is false. If we consider the 
heteroscedasticity structure in equation (13) to (18), in 
all the structures, the null hypothesis will results to 
equal error variances give homoscedasticity except 
equation (18), which will give unequal error variances 

when 2 . 

i.e 

 )222exp( 3322110
22

tttt XXX  

, when 2 .      (32) 

The null hypothesis ( 0H
) stated that there is 

homoscedasticity while the alternative hypothesis (

1H ) stated that there is heteroscedasticity. under this 
study, α is the probability of rejecting null hypothesis 
when it is not correct. while power is the probability of 

rejecting the null hypothesis ( 0H
) when the 

alternative hypothesis ( 1H ) is correct. In considering 

the Null hypothesis ( 0H
), rejection of null hypothesis 

( 0H
) given that the alternative hypothesis ( 1H ) is 

true indicates a correct decision which is the power of 
the test. we then use this to determine the 
performances of the chosen methods by consider their 
performances under different significance levels (10%, 
5% and 1%). 
3-8 Procedures For Determination Of The 
Preferred Heteroscedasticity Method  

At a particular α level a confidence interval was 

set for 10 0
0

, 5 0
0

 and 1 0
0

, Test was carried out 
based on earlier stated null and alternative hypothesis, 

The particular significance confidence interval α 
falls was determine, the number of times α falls in 
between, the set confidence interval was counted over 
the sample size and heteroscedasticity structures.  

̂  was determined as; 

R

r
̂

 

Where r is the number of times ̂  falls in 
between the confidence interval set at a particular 
significance level. While R is the number of times the 
experiment was carried out. 

The heteroscedasticity test with highest number 
of count is chosen to be the best with respect to power 
rate of test. 
 
4. Results And Discussion 

Results obtained from the simulation experiment 

shows that the number of times the estimated ̂  
which is the probability of taking correct decision ( 
power of the test) of each methods fall in between the 

set confidence interval for α = 10 0
0

, 5 0
0

 and 1 0
0

 
was counted over the sample sizes and 
heteroscedasticity structures for each 
heteroscedasticity method of detection to obtain the 
results in Table 1.1. 
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Table 1.1: The number of counts for each method of detecting heteroscedasticity structures that has the 
highest power rate value at all sample sizes when there is presence of multicollinearity in the model. 


 Method 

 Estimated Alpha (
)1.0ˆ 

 Estimated Alpha (
)05.0ˆ 

 Estimated Alpha (
)05.0ˆ 

 
 Sample size (n) Sample size (n)  Sample size (n) 
15 20 30 40 50 100 250 Total 15 20 30 40 50 100 250 Total 15 20 30 40 50 100 250 Total 

 
0.8 

BPG 0 1 1 0 0 1 1 4 0 0 1 0 0 1 1 3 0 0 0 0 0 0 1 1 
PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
ST 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 
NVST 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 3 
GLJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
GFQ 1 1 1 1 1 1 1 7 0 0 1 1 0 1 1 4 0 1 1 0 0 0 0 2 
BG 1 1 1 1 1 1 1 7 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 3 
HM 1 1 0 1 1 1 1 6 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 
WT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

 
0.9 

BPG 0 1 1 0 0 1 1 4 0 0 1 0 0 1 1 3 0 0 0 0 0 0 1 1 
PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
ST 1 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
NVST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 3 
GLJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
GFQ 1 1 1 1 1 1 1 7 0 0 1 1 0 1 1 4 0 1 1 0 0 0 0 2 
BG 1 1 1 1 1 1 1 7 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 3 
HM 1 1 0 1 1 1 1 6 0 0 0 0 0 1 1 2 0 0 1 1 0 0 0 2 
WT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
0.95 

BPG 0 1 1 0 0 1 1 4 0 0 1 0 0 1 1 3 0 0 0 0 0 0 1 1 
PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
ST 1 1 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 
NVST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 3 
GLJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
GFQ 1 1 1 1 1 1 1 7 0 0 1 1 0 1 1 4 0 1 1 0 0 0 0 2 
BG 1 1 1 1 1 1 1 7 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 3 
HM 1 1 0 1 1 1 1 6 0 0 0 0 0 1 1 2 0 0 1 1 0 0 0 2 
WT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
0.99 

BPG 0 1 1 0 0 1 1 4 0 0 1 0 0 1 1 3 0 0 0 0 0 0 1 1 
PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
ST 0 1 1 1 1 1 1 6 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 4 
NVST 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 2 0 0 0 1 0 1 1 3 
GLJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
GFQ 1 1 1 1 1 1 1 7 0 0 1 1 0 1 1 4 0 1 1 0 0 0 0 2 
BG 1 1 1 1 1 1 1 7 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 3 
HM 1 1 0 1 1 1 1 6 0 0 0 0 0 1 1 2 0 0 1 1 0 0 0 2 
WT 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
0.999 

BPG 0 1 1 0 0 1 1 4 0 0 1 0 0 1 1 3 0 0 0 0 0 0 1 1 
PT 0 1 1 1 1 1 0 5 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 2 
ST 0 1 1 1 1 1 1 6 0 0 0 1 0 0 1 2 0 0 0 1 1 0 1 3 
NVST 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 2 0 0 0 1 0 1 1 3 
GLJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
GFQ 1 1 1 1 1 1 1 7 0 0 1 1 0 1 1 4 0 1 1 0 0 0 0 2 
BG 1 1 1 1 1 1 1 7 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 3 
HM 1 1 0 1 1 1 1 6 0 0 0 0 0 1 1 2 1 1 0 0 0 0 0 2 
WT 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Source: Simulated data  
 
5. Conclusion  

This paper revealed the power rate exhibited by 
each of the nine (9) heteroscedaticity detection 
methods under consideration in a linear regression 
model considered on some heteroscedasticity 
structures and several sample sizes that was classified 

as small (15  n  30), medium (40  n   50) and 

large (100   n   250) through a Monte Carlo study. 
The results in this paper show that when power rate of 
a test was considered on each method of 
heteroscedasticity detection in the model, BG test or 
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GFQ test are consistently the most preferred methods 
of heteroscedasticity detection when there exist no 
problem of multicollinearity between the exogenous 
variables of the regression model.  

The results shows that with low sample size, BG 
and GFQ are the best except that GFQ out performed 

BG when ,05.0  
It also reveals that with medium sample size, BG 

and GFQ are consistently best except that HM and 

NVST compete well with BG at 05.0 and 

.01.0  
And with large sample size, BG and GFQ are 

consistently best except that GFQ and HM compete 

with BG and BPG at 05.0  and NVST compete 

well with BG at .01.0  
Inconclusion, BG and GFQ methods of 

heteroscedasticity are consistently best tests for 
heteroscedasticity detection when there is no 
multicollinerity problem in the regression model. of in 
detecting no-heteroscedasticity when α = 0.1 in the 
presence of multicollinearity. Moreover, when α = 
0.05, GFQ test is the best method of no- 
heteroscedasticity detection. The recommended best 
method to be used is either BG test or NVST when the 
estimated alpha equal 0.01. Thus, this study suggest 
that, either BG test or GFQ test are consistently the 
best method to detect no-heteroscedasticity when there 
is presence of multicollinearity in the model at each 
level of significance the methods performed.  
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