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2. Introduction:
Fuzzy differential equation (FDE) has been rapidly developing in recent years, and has attracted many researchers. The use of FDE is a smart way to model dynamic systems under uncertain information [25]. The nation of fuzzy derivative was first induced by (Zadeh and Chang) [9], it was followed up by (Dubois and Prade) [10], also other process has been discussed by (Puri and Ralescu and Goetschel and Voxman) [20, 12].
The concept of differential equation in fuzzy environment concepts was formulated by (Kaleva) [17], using of Hukuhara or generalized derivatives the solution turns fuzzier as time goes by [11]. But (Bede) found that a large class of BVPs has no solution if hukuhara derivative is used [3], so to overcome this, the concept of generalized derivative was developed [2, 7]. (Khastan and Nieto) found solutions of a large class of BVPs using the generalized derivative [18]. 
(Stefanini and Bede) by the concept of generalization of hukuhara difference for compact convex set and introduced generalized hukuhara differentiability for fuzzy valued function, the demonstrated that [2,23].
Recently, (Gasilov) solve the fuzzy initial value problem by a new technique (linear transformation) [13] and (Barros) solve fuzzy differential equation by fuzzification of the derivative operator [6].
Due to the wide applications of the second order fuzzy differential equation, it is considered as the most important between all fuzzy differential equations, So, Many researchers have worked on the second FDE, (Wang and Gue) [28] solve second order by Adomian, (Gasilov) [13, 14] solve by linear transformation, (Ahmadi) apply fuzzy Laplace transform [20], (jamoshidi and Avazpour) found way by shooting method [16], while (Rabiei) solved by improved runge kutta [22], Finally (Mondal and ray) solved in fuzzy environment analytically [26].
In this study, we investigate a differential equation with fuzzy boundary values. We define the problem as a set of crisp problems. For linear equations, we propose a method based on the properties of linear transformations. We show that, if the solution of the corresponding crisp problem exists and is unique, then the fuzzy problem also has unique solution. 
Moreover, we prove that if the boundary values are triangular fuzzy numbers, then the value of the solution is a triangular fuzzy number at each time. We explain the proposed method on examples. We find analytical expression for solution of second-order linear differential equation with constant coefficients. 

3. Basic concepts
In this section, we will illustrate the fundamental concepts and facts related to fuzzy differential equations. According to Zadeh [25], a fuzzy set is a generalization of a classical set that allows the membership function to take any value in the unit interval [0, 1].
Definition 2.1[ 1-4] Let  a nonempty universe and fuzzy set (A) in  is a function Where  is the degree of membership of, when  goes closer to 1, the  is more considered to belong to, but when it goes closer to 0, the  is less considered to belong to. 
Definition 2.2 [1-4] Let  be a fuzzy set in, the support of  is the crisp set in all elements in  with non-zero membership in.
Definition2.3 [1-4] Let  be a fuzzy set in, the core of  is the crisp set in all elements in  with membership in equals 1.
Definition 2.4[1-4] Let  be a fuzzy set in.  Is called a fuzzy interval if:
(i)  is normal: there exists  then 
(ii)  is Convex: for all  it holds that
;
(iii)  is upper semi-continuous
;
(iv)  is compact subset of R.
Definition 2.5: [12,23] Let A be a fuzzy set then, Is the crisp set of that contains all elements with membership greater than or equal. Where;.. Where  is lower and  is upper.
Definition 2.6 [3,17]: Generalized triangle fuzzy number
We can say that this number is a special case of generalized trapezoidal fuzzy number when the core becomes point not interval.



Fig. 1: triangle fuzzy number

At, we can get triangle fuzzy number.
Definition 2.7: generalized trapezoidal fuzzy number () [17]
is a subset of IFN in  with following membership:


Fig. 2:  representation


At, we can get trapezoidal fuzzy number.
Definition 2.8: [11], distance between two fuzzy intervals
Let A and B are two fuzzy intervals then, Hausedorff distance [11] between  is;By using Hausedorff distance, it is easily to find the distance between two fuzzy intervals which can be written as following .
Definition 2.9: [10], Let  are fuzzy numbers, and there exists 
Then, Hukuhara difference is , Where .
Then, Generalized Hukuhara difference is 
,.
Definition 2.10: [4-7,23], The generalized hukuhara first derivative of a fuzzy parametric function is defined as; , From the definition, we have two classes:
-differentiable at  
-differentiable at  
Where,  is the lower and  is the upper.
Definition 2.11: [23, 24], The generalized hukuhara second derivative of fuzzy function is defined as; 
According to the Definition 12, we have the following classes:

is--differentiable if:

 Is -differentiable if:


Definition 2.12: [26] Let be solution of any fuzzy differential is called a strong solution, if  Otherwise it is called a weak solution.
4. Fuzzy boundary value problem in different approaches
Fuzzy differential equations play an important role in increasing number of system models in engineering, physics and other sciences. For example, civil engineering models like a queuing model for earthwork and a model of oscillations of bell-towers. in modelling hydraulic, Fuzzy differential equations in modelling hydraulic differential servo cylinders by Bede and Fodor. Also the use of fuzzy differential equations to model dynamic systems and Oscillatory problems under uncertainty conditions.
There are many approaches in solving the second order FDE. These are
a) The First approach is the method based on linear transform. Split up the problem into two parts, corresponding crisp problem and the fuzzy problems. 
b) The second one is Hukuhara or generalized derivative. There is some difficulty in using Hukuhara derivative approach. To overcome the difficulty generalized derivative was developed.
c) The third approaches are extension principle. In this method, we solve the associated crisp differential equation and then fuzzify the solutions.
d) The another approaches is numerical solution of this FDE.
4.1. first approach
In this section, we are going to introduce the first approach the method based on linear transform. Split up the problem into two parts, corresponding crisp problem and the fuzzy problems. In some applications, the behaviour of an object can be determined by physics laws and these laws give crisp solution. However, if the boundary values are obtained by measurements with some errors, so these values are uncertain and it is more suitable to be modelled by fuzzy numbers and this gives rise to BVPs with crisp dynamics but with fuzzy boundary values.
consider the fuzzy boundary value problem with crisp linear differential equation but with fuzzy boundary condition.
 	(3.1)
 
According to the approach, we will rewrite the boundary condition  and , this way of writing the condition may be the meaning of transformation that we can see the uncertain parts have been moved to vertices at zero.
So, The problem is splited into two problems:
1) Associated crisp problem (certain
2) 
  	 (3.2)
3) Homogenous problem with fuzzy condition

  	 (3.3)
Easily it can be estimated that the final solution for equation (1) will be , which are the solutions of (2) and (3), the solution of problem (2) is can prepared by many analytical methods, but it is different at problem (3), the solution  of problem (3) is assumed to be a fuzzy set  of real function such as , each  must satisfy the differential equation and must have boundary conditions  from the fuzzy sets  and , where the membership of the solution at least meets the least membership of its boundary.
 	(3.4)
With membership function
 	(3.5)
Let us illustrate the solution methodology,
Here a crisp case of second order linear differential equation;

  	(3.6)
Let  be linear independent solutions of the differential equation, Then the general solution ,
For evaluating the constants:
 	(3.7)
This linear system in (7) can be represented in matrix form , where ; ;.
Then the constant is 	
 	(3.8)
Let us consider  be a vector-function of linear independent solution, then the general solution is
  	3.9)
From (8), , And Let , then we get the final form of the general crisp solution.
  	(3.10)
According to (10) and Linear transformation properties, we can say that the solution of the fuzzy boundary problem is
 	(3.11)
Lemma 3.1. , the value of the solution of (2.20) at a given time, is well-defined as a fuzzy number.
Proof. According to (2.22), an  of  is expressed as
,	(2.29)
Let linear independent solutions of (2.6) are known then, according to (2.28) and (2.29).
, 	(3.12)
Consider a fixed time t and let , then
 , 	(3.13)
Consider the transformation  and  is the image of  under linear transformation . 
Let us, discuss the case of triangle boundary values. If  and  are triangular fuzzy numbers, the  of the region  are nested similar rectangles, their images are intervals that also are nested and similar, then , to calculate  and .
Let ,and  Then 
 	(3.14)
And,
 	(3.15)
Note also that
  	(3.16)
Then,	
 	(3.17)
4.2. Second approach
In this section, the study concerns with the fuzzy effect and using the generalized Hukuhara differentiability on the following FBVP [24]:

According to the following fuzzy boundary conditions

Where are constants, are two generalized trapezoidal fuzzy number represented as:
 And
The lower and upper values of  and  are given according to Table 1:




	
	Lower values
	Upper values

	

	
	


	

	
	



1. 
Solution of fuzzy boundary value problems
Class (1, 1)
The FBVP (1) can be written as:
 	(3.20)
And
. 	(3.21)
In order to get the solution of (3, 4), we write these equations in the following system:
  	 (3.24)
Where.
So the lower and upper solutions are given by: 
, 	 (3.25)
 	(3.26)
Where,  are constants given by:



And the constants can be obtained by applying the fuzzy boundary condition given by Eq. 	(3, 4).
By using the value of  then:
 	(3.27)
 	(3.28)
Where,  values from table 1.
Class (1, 2)
 	(3.29)
 	(3.30)
The general solution:
,	
(3.31) 
 	(3.32)
Class (2, 1)
 	(3.33) 	
 	(3.34)
The general solution:
 	(3.35)
 	
(3.36)
Class (2, 2)
 	(3.37)
 	(3.38)
The general solution:	

 
(3.39)
 (3.40)

5. 
6. Applications
Example 4.1.
Consider the following FBVP
.
Class (1, 1)
The general solution is given by

,


Also, for different values of , we plotted the lower and upper solutions in Fig. 3, and we listed the lower and upper solutions for t = 0.5 in Table 2.

Fig. 3: The lower and upper solution class (1,1) of Example 1for ,0.5,0.7

Class (1, 2)
The general solution is given by
, 
 .

Fig. 4: The lower and upper solution class (1,2) of Example 1for ,0.5,0.7

Class (2, 1)
The general solution is given by






Fig. 5: The lower and upper solution class (2,1) of Example 1for ,0.5,0.7

Class (2, 2)
The general solution is given by

and



Fig. 6: The lower and upper solution class (2,2) of Example 1for ,0.5,0.7


From Fig. 6, we notice the intersection between the solution and this indicates that this class represents a weak solution which means that the inner band may become outer band at different t so, we can check the variation within Table 2.


Table 2: The lower and upper solutions of Example 1 for 
	
	Class (1, 1)
	Class (1, 2)
	Class (2, 1)
	Class (2, 2)

	
	
	
	
	
	
	
	
	

	0
	0.6857
	1.0684
	0.3239
	1.4576
	0.4958
	1.2583
	0.5925
	1.1616

	0.1
	0.7066
	1.0459
	0.3827
	1.3946
	0.5383
	1.2142
	0.5868
	1.1720

	0.2
	0.7275
	1.0234
	0.4416
	1.3316
	0.5807
	1.1702
	0.5811
	1.1825

	0.3
	0.7484
	1.0009
	0.5005
	1.2686
	0.6232
	1.2610
	0.5754
	1.1930

	0.4
	0.7694
	0.9784
	0.5594
	1.2056
	0.6656
	1.0821
	0.5697
	1.2034

	0.5
	0.7903
	0.9559
	0.6182
	1.1426
	0.7081
	1.0381
	0.5640
	1.2139

	0.6
	0.8112
	0.9334
	0.6771
	1.0796
	0.7506
	0.9940
	0.5583
	1.2243

	0.7
	0.8321
	0.9109
	0.7360
	1.0166
	0.7930
	0.9500
	0.5526
	1.2348




From Table 2, we conclude that  is increasing and  is decreasing
Then, the solution is a strong solution for class (1,1), (1,2) and (2,1) while the solution of class (2,2) is a weak solution
Example 4.2. Solve the following FBVP


Solution; we represent the solution 
1) The Solution  of the crisp non-homogenous problem
2) 

Then, .
3) The solution  of the fuzzy homogenous problem:


Then, ,
 ,
  .
Then, 
. 
4) The Final solution 

In this example, the final solution will be represented by using  levels and this representation is very important because it can give more data about the solution in different membership.
we can get


Since 


Figure (7) is the  levels solution of example4.2

As it shown in figure 7, the solution of the problem in example 4.2. and this figure is diagram of  with different levels of  the black dashed line is the crisp solution or the solution at  and the blue dashed lines are the solution at  while the red dashed line at  banded with the upper and lower solid black lines and can be called 0-cuts.

Conclusion: 
In this paper; the analytical solution of a second order differential equation with fuzzy conditions by using Gazilov way in linear transformation approach. From the results we confirmed that the solution existence and uniqueness due to the uniqueness of the crisp solution of the corresponding crisp problem. And also the analytical solution under generalized hukuhara differentiability and its advantage in solution and more data with more classes but the disadvantage in the switching points, a comparison between the two different approaches expand the way of research in this point.
So, in the future research we will solve the same problem but with adding a fuzzy non homogeneous term.
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