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Abstract: This study investigated the temporal/near re-occurrence of simulated phase variables in chaotically 
responding nonlinear Duffing oscillator using fractal dimension when excited harmonically. The unsteady and 
steady phase variables were simulated from three different initial conditions by the constant step fourth order 
Runge-Kutta algorithms while the fractal characterization was achieved by the box-counted method. A total of 8,192 
boxes arranged edge-to-edge on the time axis and with equivalent size of simulation time step were used to store the 
simulated phase results that are within 0.02 tolerance limit relative to specified standard. However, the fractal 
dimensions estimate were based on 14-different resolution scales. The results show temporal distribution of 
simulated phase variables that shared qualitative and quantitative similarities with Cantor set. The estimated fractal 
dimensions were between 0.0 to 0.58 and 0.0 to 0.65 for displacement and velocity component respectively. The 
distribution of the estimated fractal dimensions shows distinct peak values for the initial conditions. The addition of 
corresponding peak values of the estimated fractal box dimension from the displacement and velocity components 
are 1.10, 1.09 and 1.12 for the initial conditions of (-1, 0), (0, 0) and (1, 0). These estimates can be used to predict 
the fractal dimension of the corresponding Poincare section to within 14.9% maximum absolute error. 
[Salau T. A.O. and Ajide O.O. Fractal Investigation of Temporal Distribution of Simulated Phase Variables of 
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1. Introduction 

Researchers have found fractal to be an 
important concept in dynamics. It is interestingly 
becoming one of the main fundamentals in chaos 
theory and nonlinear dynamics. Although the theory 
of chaos and the concept of fractals evolved 
independently, studies have shown that they have 
penetrated each other’s front and are highly 
interdependent. Exhaustive literature has shown 
fractal concept to be a resourceful tool for 
investigating interesting properties of chaotic 
dynamics. The main interesting properties of chaotic 
systems are nonperiodic and complex temporal 
behaviour, sensitive dependence on initial conditions, 
fractal structure and long term unpredictability 
(Aihara, 2002). Among these interesting dynamic 
properties, researchers’ attentions and interests have 
shifted to the study of temporal and spatio-temporal 
dynamic behaviours (Brindley et al, 1994; Baier and 
sahle, 1997; Nakao, 1999; Cai, 2001; MacIntosh et al, 
2013; Zamani et al, 2014). Temporal property in 
dynamics refers to all properties of a system that 
varies with time. Temporal system sometime shares 
certain properties with cantor set. A Cantor set has 
been described as closed, totally disconnected, and 
perfect subset of a closed interval. The significance of 
cantor set in describing temporal distribution 
dynamics is enormous. Extensive works have been 
done by researchers in this field on the 
characterization of temporal distribution in system 

dynamics. Pathirana et al (2003) work was on 
estimating rainfall distributions at high temporal 
resolutions using a multifractal model. A multifractal 
model based on the scaling properties of temporal 
distribution of rainfall intensity was formulated to 
investigate the intensity distribution relationships in 
the available scaling regime. The findings obtained 
from the study have provided a clue to means of 
relating rainfall distributions at various temporal 
scales. In order to simulate and predict the air 
pollutant concentration data, Ho et al (2004) studied 
the temporal variations of PM10 concentration in 
Taipei using fractal approach. A simple generalised 
cantor set with two rescaling parameters and measured 
parameters was employed to model multifractal 
spectra of PM10 concentration time series. Although it 
was reported in the paper that it is difficult to conclude 
that PM10 is governed by a single two-scale cantor set, 
the results obtained can be considered as a satisfactory 
model for temporal distribution of PM10 
concentrations. The authors’ paper provides some 
insight on the temporal distribution of a dynamic 
system. Analysis of high impedance faults using 
fractal approaches has been carried out (Mamishev et 
al, 1996). The application of the concepts of fractal 
geometry in the analysis of high impedance faults was 
described in the authors’ paper. The temporal 
behaviour of high impedance faults was examined 
using Root Mean Square (RMS). The paper showed 
that the temporal dynamics of power system currents 
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is usually of low dimensions with 1.0 to 2.0 fractal 
dimensions. The authors’ paper has demonstrated the 
relevance of temporal dynamics in detection of 
impedance faults in power system. A temporal 
distribution of microseismicity using fractal technique 
was carried out by Latora et al (1998). The authors 
analysed a catalog of micro-earthquakes recorded by 
the four stations in the low eastern flank of Mt Etna 
during the period 1989-1994. The authors found that 
fractal clustering is very probably linked to the onset 
of the two eruptive phenomena that occurred in the 
same period. A chaotic perspective of rainfall 
dynamics at different scales has been examined 
(Sivakumar, 2001). The correlation dimensions for the 
four rainfall series implied the possible existence of a 
chaotic behaviour. The paper concluded that the 
presence of chaotic behaviour could provide 
interesting openings for a better understanding of the 
rainfall transformation process. In the same vein, a 
study which explored the invariance of properties 
manifested across scales and the determination of 
fractal cum multifractal behaviour observed in the 
temporal structure of rainfall using daily data has been 
carried out (Taouti, 2014). The paper adopted box-
counting technique in order to determine the fractal 
dimension of daily rainfall data. The outcome of the 
study has given a deep insight to the temporal 
distribution of rainfall in a Mediterranean climate in 
northern Algeria. Telesca et al (2004) carried out an 
investigation of scaling properties in temporal patterns 
of seismic sequences by means of fractal techniques. 
The multifractal spectrum parameters derived from the 
analysis of the shape of the singularity spectrum has 
been used to measure the complexity of seismicity. 
Kozelov (2005) investigated the temporal dynamics of 
auorora by exploring available information about the 
spatial distribution of auroral luminosity in order to 
characterize the metric in “space of images”. The 
author’s article has indeed provided some 
understanding on the application of temporal chaos in 
television images. Enescu et al (2005) studied the 
temporal distribution of events in a paper that focused 
on Multifractal and chaotic analysis of Vrancea 
intermediate-depth earthquakes. In the first part of the 
work, multifractal characteristics of the temporal 
distribution of the earthquakes were analyzed. The 
outcome of the first part of the work showed two 
distinct scaling regimes. A clear non-homogeneous 
and multifractal pattern was found at small scales. At 
large scales, the temporal distribution of events 
showed a monofractal and close to random behaviour. 
The authors’ paper has enriched one’s understanding 
about the relevance of temporal distribution. The 
concept of temporal distribution was also applied in 
Gutiérrez et al (2006) paper. In the authors’ paper, 
characterization of temporal precipitation distribution 

using chaos game was carried out. The study showed 
that different climates exhibit characteristic patterns 
with different fractal exponents and entropies. The 
paper has indeed provided a useful application in 
climate classification and characterization of temporal 
precipitation aggregation patterns. One of the most 
seismically active areas in Italy was examined by 
(Telesca and Lovallo, 2008). The outcome of the 
study showed significant deviations from uniform 
power-law scaling in the seismic temporal fluctuations 
which were mostly linked with the occurrence of 
rather large earthquakes or seismic clusters. The 
evolution of the temporal mutifractal scaling 
properties of the Chiayi earthquake in Taiwan has 
been investigated (Tang et al, 2012). The study 
revealed that variations in the fractal dimension of 
earthquake may be used as a precursor of a large 
earthquake. 

Despite the immense efforts made so far on 
characterization of temporal distributions using fractal 
approach, literature is very sparse on the study of 
temporal distribution of simulated phase variables of a 
chaotic dynamic system. The identified research gap 
motivated this present study which examined the 
temporal distribution of simulated phase variables in a 
nonlinear harmonically excited Duffing oscillator 
using fractal dimension as a characterization tool. 
 
2. Methodology 

The dimensionless second order differential 
equation (1) abstracted the harmonically excited 
Duffing oscillator used in this study and was reported 
to have chaotic response under some drive parameters 
in Moon (1987), Dowell (1988) and Narayanan and 
Jayaraman (1989b). 

2(1 ) ( )
2

o

x
x x x P Sin t 
 

   
 (1) 

 

Equation (1) refers, x , x


and x


 represents 
respectively displacement, velocity and acceleration of 
the oscillator about a set datum over time (t). The 

drive parameters are damp coefficient ( ), excitation 

amplitude ( oP
) and, excitation frequency (  ). 

Equation (1) can be simulated using fourth order 
Runge-Kutta algorithms only when it is represented as 
a pair of first order differential equivalent as in 
equations (2) and (3). The transformation procedure 

assumed 1 2( , )x x
as displacement and velocity 

component. 

2 11
x fx



 
   (2) 
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 (3) 

 
The present study utilized the equilibrium 

positions of the Duffing oscillator as initial conditions. 
In view of this and with reference to equations (2) and 
(3) the un-excited Duffing oscillator has three 

equilibrium positions which are 1 2( , 1,0)x x  
,

1 2( , 0,0)x x 
, and 1 2( , 1,0)x x 

. The 
corresponding Jacobian matrix is given by equation 
(4). Evaluation of this equation as a function of 

eigenvalue (  ) at 1 2( , 0,0)x x 
yield the 

characteristic equation 5 and at 1 2( , 1,0)x x  
or 

1 2( , 1,0)x x 
 yield equation 6. The solutions to 

equations (5) and (6) are given by equation (7) and (8) 

respectively. Thus 1 2( , 0,0)x x 
 is an unstable 

saddle while 1 2( , 1,0)x x  
 and 1 2( , 1,0)x x 

 are 
stable focus. 

1 1

1 2

2 2

1 2

f f

x x

f f

x x
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( 2)
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  
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2.1 Fourth-order Runge-Kutta algorithms 

The popular fourth–order Runge-Kutta 
algorithms scheme is given by equations (9) to (13), in 

which 1 iy   and iy
 represent any of the phase 

variables being simulated at iteration time nodes 1 i

and i  respectively. The simulation of the 
displacement and velocity components is done 

simultaneously at constant time step ( h ) taking 

respectively 1f f
and 2f f

 for displacement 
and velocity component. 

 

 1 1 2 3 42( )
6

i i

h
y y K K K K     

 (9) 
 

1 ( , )i iK f t y
    (10) 

 

1
2 ( , )

2 2
i i

K hh
K f t y  

  (11) 
 

2
3 ( , )

2 2
i i

K hh
K f t y  

  (12) 
 

4 3( , )i iK f t h y K h  
  (13) 

 
2.2 Simulation Parameters 

The present study used   = 0.168, oP
 = 0.21, 

and  = 1.0 because Dowell (1988) reported chaotic 
response of the Duffing oscillator for these parameters 
combination. The simulation of the transient and 
steady solutions of equations (2) and (3) with the 
fourth order Runge-Kutta algorithms was driven at 

constant time step (
100ph t T  

) in which

2pT  
. The transient and steady simulation 

period spanned the first twenty (
20 pT

) and the next (

140 pT
) consecutive excitation periods respectively. 

The reference phase variables (5000) were selected 
consecutively from the steady solutions in the first 

fifty (
50 pT

) simulation periods. The temporal 
distribution of the remaining steady solutions that are 
within 0.02 tolerance relative to selected specified 
reference value were noted appropriately in 8192 

lined-up boxes of size ( h ). Thereafter these were 
analyzed for their corresponding estimated box 
dimension using the box-counted method and utilizing 
the selected reference phase variables one after the 
other. The procedure is very similar to that used by 
Salau and Oke (2013) for the fractals analysis of 
English alphabets in a doctoral thesis.  
2.3 Box-counted Method 
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The power law relationship is expected between 
the variation of the scale of observations (X) and the 
corresponding box-counted (Y) when using the box-
counting method for estimating the fractal box 
dimension (D), hence the proportional equation (14). 
A straight line equation (15) with intercept log ( ) 
and slope (D) is obtained when a constant of 
proportionality ( ) is introduced and logarithm of 
both sides of equation (14) taking. The slope of the 
line of best fit to fourteen (14) observed data points is 

accepted as estimate of fractal box dimension for the 
present study. 

DY X
    (14) 

 

log ( ) log ( ) log ( )Y D X   (15) 
 
3. Results and Discussion 

 

Figure 1: Phase plots of steady simulation results in the time interval (
20 50p pT Time T 

) when the simulation 
initial conditions is (-1, 0). 

 
Figure 2: Temporal distribution/re-occurrence at 0.02 tolerance of displacement (bottom, 0.58612) and velocity (top, 

0.22397) components in the steady simulation time interval (
70 152p pT Time T 

) when the simulation initial 
conditions is (-1, 0). 
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The phase plots shown in figure 1 was simulated 

with   = 0.168, oP
 = 0.21, and  = 1.0 from initial 

conditions (-1, 0) and have dynamic interpretation of 
chaotic response of the Duffing oscillator. This agreed 
with the report of Dowell (1988) for the combination of 
these drives parameters and thus validated the 
FORTRAN95 language simulation codes developed for 
the present study. 

The displacement (bottom) and velocity (top) 
distribution/re-occurrence at 0.02 tolerance shown in 

figure 2 is very similar in visual appearance to Cantor 
dust (with a fractal dimension of 0.631) discussed in 
Barnsley (1993) and Edward (1996). Quantitatively the 
box dimensions are 0.454 and 0.615 respectively for 
displacement and velocity components, see table 1 and 
figure 3. The box dimensions (D) are equivalent to the 
slope of line of best fit to the log-log plots of scale and 
the counted number of filled boxes for the 
displacement and velocity components. 

 
 
Table 1: Variation of number of filled boxes with increasing resolution for displacement (0.58612) and velocity 

(0.22397) components in the steady simulation time interval (
70 152p pT Time T 

) when the simulation initial 
conditions is (-1, 0). 
Resolution Number of filled Boxes (Y) Natural logarithms of Scale and number of filled boxes 
(Scale=X) Displacement Velocity Scale Displacement Velocity 
1 1 1 0.00 0.00 0.00 
2 2 2 0.69 0.69 0.69 
4 4 4 1.39 1.39 1.39 
8 6 8 2.08 1.79 2.08 
16 10 16 2.77 2.30 2.77 
32 18 32 3.47 2.89 3.47 
64 29 61 4.16 3.37 4.11 
128 42 94 4.85 3.74 4.54 
256 46 122 5.55 3.83 4.80 
512 47 133 6.24 3.85 4.89 
1024 48 144 6.93 3.87 4.97 
2048 52 169 7.62 3.95 5.13 
4096 60 211 8.32 4.09 5.35 
8192 82 297 9.01 4.41 5.69 
 
 

 
Figure 3: Log-log plots of resolution (scale) and the counted number of filled boxes. 
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Table 2: Estimated fractal box dimensions for sample of twenty out of 5001 investigated points when simulation 
initial conditions is (-1, 0). 

Phase Point Number of filled boxes out of 8192 
Fractal box dimension (D) of temporal 
distribution of filled boxes 

Displacement Velocity Displacement Velocity Displacement Velocity 
0.58612 0.22397 82 297 0.454 0.616 
0.60051 0.23404 91 293 0.477 0.613 
0.61555 0.24480 89 301 0.468 0.614 
0.63128 0.25619 99 326 0.485 0.620 
0.64775 0.26817 96 330 0.481 0.620 
0.66499 0.28069 92 334 0.478 0.624 
0.68303 0.29368 92 324 0.475 0.617 
0.70191 0.30708 80 318 0.473 0.615 
0.72163 0.32078 98 348 0.488 0.618 
0.74222 0.33471 108 344 0.498 0.615 
0.76369 0.34876 98 325 0.488 0.606 
0.78605 0.36282 94 286 0.488 0.592 
0.80928 0.37675 97 252 0.489 0.576 
0.83339 0.39043 101 230 0.492 0.567 
0.85834 0.40369 102 205 0.493 0.550 
0.88410 0.41638 112 223 0.504 0.556 
0.91065 0.42832 114 206 0.507 0.548 
0.93791 0.43932 122 202 0.517 0.546 
0.96583 0.44919 125 218 0.513 0.550 
0.99433 0.45773 121 238 0.516 0.558 

 
Table 3 refers. The numbers of filled boxes out of 

8192 maximum possible for the displacement 
component remain consistently lower than that of the 
velocity component of the phase points studied. For 
instance for the phase point (0.99433, 0.45773) the 
corresponding number of filled boxes is (121, 238). 
However despite the fact that the filled boxes for the 
velocity component almost double that of the 
displacement counterpart there is only absolute 
difference of 0.042 in the estimated fractal box 
dimensions (0.516, 0.558). This is re-affirmation of the 
fact that the estimated fractal box dimension is highly 
dependent on the temporal distribution and not actual 
number of filled boxes. Based on a total of 5001 
studied displacement value points, the number of filled 

boxes lies in the limits 8-242 and the estimated fractal 
box dimension lies between 0.181-0.575. The 
corresponding results for the velocity component is 10-
390 limit values for the number of filled boxes while 
the estimated fractal box dimension lies between 0.204-
0.648. 

The results reported in figures 1 to 3 and tables 1 
to 3 were similarly obtained for the studied initial 
conditions (0, 0) and (1, 0), but the results not 
presented here only to save space. However the 
normalized distribution of the estimated fractal box 
dimensions in 100-equal intervals between minimum 
and maximum estimated box dimension are presented 
in figures 4 to 6 for the respective studied initial 
conditions (-1, 0), (0, 0) and (1, 0). 

 
Figure 4: Normalized distribution of the 5001 estimated fractal box dimension for the initial conditions (-1, 0). 
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The distributions of estimated fractal dimensions shown in figure 4 have peak values of 0.49 and 0.61 for 

respective displacement and velocity components. 
 
 

 
Figure 5: Normalized distribution of the 5001 estimated fractal box dimension for the initial conditions (0, 0). 
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common and peak values of 0.47 and 0.62 for the 
respective displacement and velocity components. The 

observation is expected because the number of filled 
boxes is between 0-241 and 0-382 for the displacement 
and velocity components respectively. 

 
 

 
Figure 6: Normalized distribution of the 5001 estimated fractal box dimension for the initial conditions (1, 0). 
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disk dimension (1.2815) of the Poincare section for 
the same Duffing oscillator drive parameters reported 
by Salau and Ajide (2012) is 14.9%. The large 
percentage difference can be accounted by differences 
in computation methods and simulation time steps. 
Salau and Ajide (2012) used optimum disk counted 
method to analyze periodically reported phase 
variables over a very large number of iteration periods 
and shorter iteration step. However the iteration time 
step is higher for the current method and data used 
were collected from the relatively shorter time history 
of simulated phase variables. 
 
 
4. Conclusions 

This study has demonstrated the existence of 
qualitative and quantitative resemblance between the 
temporal distribution of a dynamic system phase 
variables and the Cantor set. The displacement 
temporal distribution compare visually well with 
Cantor set while the velocity counterpart compare 
very well with Cantor set in quantitative term. 
Moreover this study shows that the sum of the peak 
dimension values from the fractal analysis of the 
temporal distribution of phase variables can be used to 
predict the fractal dimension of the corresponding 
Poincare section to within 14.9% maximum absolute 
error. 
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