
New York Science Journal, 2011;4(7)                                                    http://www.sciencepub.net/newyork 

  

http://www.americanscience.org           newyorksci@gmail.com 

   

21 

Optimal Facility Location on Spherical Surfaces: Algorithm and Application 
 

Jovin J. Mwemezi, Youfang Huang 
 

Logistics Research Center, Shanghai Maritime University 
1550 Pudong Avenue, Shanghai, 200135 China 

mwemezijm@yahoo.com 
 

Abstract: Fundamental to optimal location of facility is some measure of point-to-point distances. Distance 
measurements used in facility location are predominantly based on Rectilinear and Euclidean distances. This paper 
presents “great circle distance” which represents the shortest path for distance modeling and optimal facility location 
on spherical surface.  Great circle distances takes into consideration the geometrical reality of the spherical Earth 
and offers an alternative to widely held notion that travel over water can be exactly modelled by Euclidean distances. 
The need for geometrical presentation of the spherical earth becomes very relevant when we take into consideration 
an ever increasing facility location at sea where great circle travel can be practised. Facilities being located at sea 
include oil rigs, mobile drilling units and dynamically positioned units. The use of “Great circle distances” opens up 
another avenue for convergence of Navigation and Spherical Trigonometry into advancement of logistics and 
facility location. In this paper an evaluation of single facility location using great circle distances is used to 
demonstrate the application of the concept. 
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1. Introduction 
It is recognized that the location of a facility 
determines and has great influence on the distribution 
system parameters including time, costs and 
efficiency of the system (Sule, 2001). As such, 
optimal location of the facility is essential for 
attaining improved flow of goods and services to 
customers served by the facility. In choosing the 
location of a facility both qualitative and quantitative 
factors are taken into account including availability 
of land, proximity to raw materials or market, 
availability of utilities and transport facilities as well 
as social, economic and political factors (Zarimbal, 
2009; Melo et al, 2005). Distance or proximity is one 
of the important metric which many decision makers 
seeks to optimize through minimization of the mean 
(or total) distance as in the median concept or 
minimization of the maximum distance as in the 
centre concept (Schilling et al, 1993).  

Though distance is a well known parameter, its 
determination in certain settings could be challenging 
like finding out distance between positions defined 
by latitudes and longitudes on Earth. Considering, the 
spherical nature of the Earth it is evident that distance 
modeling in facility location that takes into account 
this fact will be an improvement on the current 
practice dominated by Euclidean and Rectilinear 
models which are best suited to planar surfaces. This 
paper seeks to present an alternative distance 
measurement based on “great circle distance” which 
represents the shortest path on spherical surface.  The 

need for geometrical modeling of distance of the 
spherical earth becomes very relevant when we take 
into consideration an ever increasing facility location 
at sea for harnessing natural resources including oil 
rigs, mobile drilling units and dynamically positioned 
units. Unlike travel on land where physical barriers 
have to be avoided, it is practical to travel along the 
great circle path during open sea navigation.  

Logistics has borrowed theories from many 
other disciplines of study like marketing, 
mathematics and psychology (Stock, 1997; Sachan 
and Datta, 2005; Gammelgaard, 2004).  The use of 
“Great circle distances” opens up another avenue for 
borrowing from navigation and spherical 
trigonometry into advancement of logistics and 
facility location. In this paper single facility location 
based on great circle distances is evaluated in the 
process of demonstrating and applying the concept. 
 
2. Distance Functions in Location Problem 

Zarimbal (2009) clearly affirm that that the distance 
functions play an important role in facility location 
problems. He identifies different distance functions 
used in location problem with each having its own 
domain, advantages, and disadvantages. He defines 
distance as a numerical description of how far apart 
objects are at any given moment in time and may 
refer to a physical length or a period of time. While 
making location decisions, network design and 
optimization; the distribution of travel distances 
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among the service recipients (clients) remains an 
important issue.  

Based on the work Zarinbal (2009)  we note that 
Euclidean and Rectilinear distance accounts for more 
than 63 percent of distance functions used in location 
problems.  Euclidean distance assumes that one can 
travel almost directly from one station to another 
following a straight line as shown in figure 1 
(Montreuil, 2008; Melachrinoudis and Xanthopulos, 
2003).  

Rectilinear distances are applicable when travel 
is allowed only on two perpendicular directions such 
as North–South and East–West arteries as shown by 
the dotted line in figure 2. This distance is also 

popular among researchers because the analysis is 
usually simpler than employing other metrics 
(Drezner and Wesolowsky, 2001). The rectilinear 
distance is also called Manhattan or Taxicab Norm 
distances; because it is the distance a car would drive 
in a city lay-out in square blocks. Apart from these 
two dominant distance functions, other distance used 
in location problem includes aisle distance, distance 
matrix, minimum lengths path, Hilbert Curve, 
Mahalanobis distance, Hamming Distance and 
Chebyshev Distances (Klamroth, 2002; ReVelle and 
Eiselt, 2005).  Klamroth (2002) groups these 
distances into multi-parameter round norms, block 
norms and polyhedral distances. 

 

 
 
Thus Euclidian distance between two points A and B 

with coordinates A ),( yx and B ),( ii yx  is expressed 

mathematically as;
  

[ ]2

1
22 )()()( ii yyxxsd −+−=

……… (1) 

And a Rectilinear distance )(sd between 

A ),( yx and B ),( ii yx co-ordinates is expressed as: 

yyxxsd ii −+−=)( ………………... (2) 

2.1. Deficiency of Current Distance Modeling in 
Location Problem 

In a realistic environment the choice of a 
suitable distance function plays a crucial role for a 
good estimation of travel distances (Klamroth, 2002 
and Sminchi-Levi, 1997). In reality we are located on 
spherical Earth with our addresses defined by the 
intersections of latitudes and longitudes. Precise 
geographic locations can be achieved by using a 
geographic information system (GIS) and other 
satellite based systems like the Global Positioning 
Systems (GPS) and Glonass as well as navigation 
charts (Manley, 2008). Grid systems can also be used 
to model location and travel distance but suffer from 
having limited use as most of them are established 
based on national grid reference system hence 
inappropriate to evaluate facility location and 
networks that spans across the borders of countries 
with different grid reference system. 

Bramel and Sminchi-Levi (1997), Klamroth 
(2002), Drezner and Wesolowsky (2001), and 
Zarinbal (2009) assert that air travel and travel over 
water can be exactly modeled by Euclidean distance.  
However, this suggestion disregard the fact that air 
travel and sailing at sea is made over a spherical 
surface whereas Euclidean modeling simply 
measures the distance that would be obtained if the 
distance between two points were measured with a 
ruler (Zarinbal, 2009). Using the Pythagorean 
Theorem (as in Euclidian Distance) and Spherical 
Trigonometry principles reveals disagreement 
between the measurements and the calculations of the 
sides and angles. In fact, the sum of the angles in 
spherical triangle is greater than the 180 degrees 
which is always measured in planar triangles (Ross, 
2002). The discrepancy between the distances 
measured based on Euclidean and those based on 
spherical trigonometry becomes greater, the further 
apart the locations are from each other (Ross, 2002). 
Modeling distance of air travel or ocean navigation 
using Euclidean distances is in principle asserting 
that such travel is made through the interior of the 
sphere which is not the case. This anomaly can be 
corrected by use of spherical trigonometry as 
proposed in this paper. 
 
2.2. Great Circles in Distance Modeling 

Based on the work of Ross (2002), Frost (1988) 
and Earl et al (1999) we note that Trigonometry and 

),( 21 yxB  
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Figure 1: Euclidean Distance Figure 2: Rectilinear Distance 
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spherical trigonometry were primarily developed for 
and used in astronomy, geography, and navigation. 
Spherical trigonometry was developed to describe 
and understand applications involving triangles on 
spheres and spherical surfaces. Spherical 
trigonometry offers a realistic representation of the 
Earth surface which is spherical in nature and is 
widely used in other discipline of studies but its 
potential particularly the use of great circle distances 
remains untapped in logistics. The potential areas for 
application of spherical trigonometry concepts 
include but not limited to hub-and-spoke network 
design and facility location at sea like oil and gas rigs.  

Measurement of distances in spherical 
trigonometry is based on solving spherical triangles 
whose sides form arcs of great circles (Das et al, 
2001). As in figure 1, great-circle arcs form the sides 
of a spherical triangle, and where two arcs intersect, a 
spherical angle is formed. In other words, the arc 
lengths are a measure of the angle they subtend at the 
center of the sphere, and the spherical angles between 
the arcs are a measure of the angle at which the 
planes that form the arcs intersect. On the Earth, the 
equator and circles of longitude are natural great 
circles. Likewise, any circular path around the Earth 
that cuts it into two equal hemispheres is a great 
circle. Spherical trigonometry involves relationships 
between the arc lengths (sides) and the spherical 
angles between the arcs. 

Studies have shown that the shortest distance 
between any two positions on the earth’s surface lies 
along the arc of the great circle joining these two 
positions. Thus on a spherical surface, a great circle 
path, often called a geodesic, is always the shortest 
path between two points (Ross, 2002). As expressed 
by Wikipedia between any two points on a sphere 

which are not directly opposite to each other there 
is a unique great circle. 

In recognition of the fundamental difference 
between spherical geometry and Euclidean Geometry 
it is apparent that the equations for distance take 
different forms in these two domains of knowledge. 
Fundamentally, the distance between two points 
in Euclidean space is the length of a straight line 
from one point to the other while in spherical 
geometry straight lines are replaced with geodesics or 
great circle paths.  

While positions of the geographical places can 
relatively be easily determined based on existing 
maps or global positioning systems like GPS and 
Glonass the calculation of the great circle distance 
and thus the shortest distance between places needs a 
formula. By using a system of co-ordinates of 
longitude and latitudes the distance along the great 
circle can be determined by solving the quantities of 
the resultant spherical triangle formed by the 
intersection of three great circles (Frost, 1988) 
namely: 

a) The great circle arc joining the two positions 
(arc c in figure 1) 

b) The meridian (longitude) through position 1 
(meridian joining C and A in figure 1) 

c) The Meridian (longitude) through position 2 
(meridian joining C and B in figure 1) 

 

 
 

Such spherical triangles and shortest distance 
between geographical points are solved by using the 
haversine formula (Bell et al, 2010) as shown in 
equation (3), (4) and (5). Thus in spherical triangle 
ABC in figure 1 above, given CA or b, CB or a and 
angle C, the haversine formula to solve arc length AB 
or c is expressed as: 

 
 

)()cos()(cos)()( dlathavlatBAlatdlonghavdisthav += ………………………….……… ….. (3)  

Or 

)()sin()sin()( bahavbaChavhavAB −+= ……………………………………………….……. (4) 

 
 
 

A 
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a
 

c
 

C

Figure 1: Spherical Triangle 
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Where:  

   −disthav. Haversine of distance between position 
A and B 

−dlonghav. Haversine of the difference between 

the longitudes through position A and B respectively 

−Alat.cos Cosine of the latitude through position 
A 

−Blat.cos Cosine of the latitude through position 
B 

−dlathav. Haversine of the difference between 
latitudes through position A and B respectively 

Alternatively, great circle distance can be 
calculated by finding the interior spherical angle 
between the two points and then multiplying that 
angle by the radius of the earth. Thus the length of 
the side of the spherical triangle (distance S) in 
figure 2 is given by: 

rS α= …………………………………………. (5) 
Where: 

=S  Arc length (great circle distance on the sphere) 
=r Radius, in this case the radius of the earth which 

is 6,371.009 km or 3,958.761 miles or 3,440.069 
nautical miles and  

=α Central angle measure  

 
Based on the haversine formula the central 

angle in radians is expressed as 

)6.(
2

sincoscos
2

sinarcsin2 2
21
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Where: 

=α  Interior Spherical angle 

=−=∆ 21 θθθ Difference in Latitude ( dlat ) 

=1θ Latitude at position 1 

=2θ Latitude at position 2 

=∆φ Difference in Longitude ( )dlong  

In general the different forms of the haversine 
formula can be deduced from the law of cosine for 
spherical triangle. For spherical triangle ABC in 
figure 1 the cosine rule is stated as: 

)cos()sin()sin()cos()cos()cos( Cbabac +=  

)cos()sin()sin()cos()cos()cos( Acbcba +=  

)cos()sin()sin()cos()cos()cos( Bcacab +=  

In order to deduce the distance from the 
haversine formula the haversine tables are used. 
Value in (4) can be computed directly using 
calculators or some software and programs which 
have been developed that solves the distances directly 

utilizing the excel capabilities.  
The haversine formula we will assume that the 

Earth is a perfect sphere, even though it really isn't 
but somewhat ellipsoidal at the poles. To correct this 
anomaly a more complicated formula known as 
Vincenty’s formula (equation 7) was developed 
(Jenness, 2008). Except for the antipodal point 
(points on the sphere directly opposite to each other), 
the haversine formula gives accurate distance. For 
demonstration in this paper the haversine formula has 
been used. 

)7.....(..............................
coscoscossinsin

)coscossinsin(cos)sin(cos
arctan

2121

2
2121

2
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3.0. Application of Spherical Trigonometry in 
Location Problem 
The starting point in determining the optimum 
location is to find the centroid/centre of gravity of the 
spherical polygon under consideration (Jennes, 2008) 
as the initial coordinate of the new facility. 
Calculating a centroid for spherical surface is 
complex and still being studied, however, it is similar 
in concept as calculating of planner surface. The 
main difference is that longitudes and latitudes are 
not so much of coordinate but rather directions from 

the centre of the sphere. Since longitude and latitudes 
cannot be simply added and divided as the Cartesian 
coordinates can (Jennes, 2008), we first convert them 
into radians for calculating the centre of gravity. In 
order to facilitate calculations by excel, the positions 
given in degree, minutes and seconds are converted 
into decimal places and radians (Pearson, 2009). 
Likewise, in order to take in to account the 
hemisphere in which the position lies we introduce 
negative values for South Latitudes and West 
longitudes.  

s

s 
α  

r  

r  

Figure 2: Arc length (S) and Central angle 
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3.1. The Algorithm for Applying Great Circle 
Distances in Facility Location  

i. Express latitudes and longitudes given in 
degrees, minutes and seconds as decimal 
values 

ii. Express West Longitudes and South 
Latitudes as negative values otherwise 
positive 

iii. Express location coordinates as radians by 
first converting degrees, minutes and second 
into decimal then apply 

)8.....(....................*
180

deg
π=Radians  

iv. Determine the initial co-ordinate of the new 

facility ),( ** yx defined by centre of gravity 

formula  

∑∑= iii wxwx*
 and 

)9.......(* ∑∑= iii wywy
 

 

v. Calculate the total distance (cost) from 

),( ii yx to the optimal location using the 

haversine formula 
vi. Make an iterative search of minimal total 

distance/cost based on initial position until 
no improvement is found 

 

3.1 Application of the Concept and Results 

ABC Company Ltd has 8 offshore rigs located at sea 
with coordinates as shown in table 1 (locations for 
demonstration purpose only). On reviewing its policy 
on distribution of supplies to the rigs, ABC plans to 
send supplies once in month to a central warehouse 
by using a ship. From the central warehouse the 
supplies are distributed to other rigs by smaller boats 
making 2 trips to rig no.1 and 6 and only one trip to 
all other rigs per week. The task is to determine the 
location of the central warehouse that minimizes the 
travel distance and therefore the distribution costs.  

 
Table 1: Location of Oil and Gas Rigs 

RIG LOCATION (DEGREE)  LOCATION (DECIMAL) 

 LATITUDE LONGITUDE LATITUDE LONGITUDE 

1 01º 36' 15" N 07º 37' 17" E 1.6041667 7.6213889 

2 02º 00' 27" S 06º 25' 50" E -2.0075 6.4305556 

3 00º 40' 38" N 09º 05' 26" E 0.6772222 9.0905556 

4 01º 04' 23" S 05º 19' 45" E -1.0730556 5.3291667 

5 00º 03' 06" S 08º 07' 26" E -0.0516667 8.1238889 

6 02º 53' 52" N 08º 59' 18" E 2.8977778 8.9883333 

7 00º 28' 46" N 06º 57' 30" E 0.4794444 6.9583333 

8 01º 05' 36" S 08º 27' 14" E -1.0933333 8.4538889 
 
 
 
Solution: 

We have noted that Great circle distance provides the 
shortest distance between two positions on the 
surface of the earth; hence great circle distances are 
used in solving this problem using the algorithm 
stated above.  
 
The objective function: Minimize 
 

 rwS
n

i
i∑

=

=
1

α -----from (5)  

Where Tripsw =  

 

Step 1: Express location co-ordinates in decimal 
format (see Table1) 
Step 2: Express West Longitudes and south latitudes 
as negative values otherwise positive (see Table 1 
and figure 3)  
Step 3: Express Location coordinates as radians (see 
Table 2) 

Step 4: Determine the initial latitude (
*x ) and initial 

longitude (
*y ) as shown in table 2  

Step 5: Calculate the total distance (cost) from 

),( ii yx to the optimal location using the haversine 

formula:  
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Table 2: Calculation for Initial Location 

Rig Trips 

( iw ) 

Lat in 

Radians ix
 

Long in  

Radians iy  
ii xw  ii yw  ∑∑= iii wxwx*

 

1 2 0.027998 0.1330183 0.055996 0.2660367 = 0.0103585 radians 

2 1 -0.0350375 0.1122344 -0.0350375 0.1122344 = 00º 35' 37" 

3 1 0.0118198 0.1586601 0.0118198 0.1586601  

4 1 -0.0187284 0.0930115 -0.0187284 0.0930115  

5 1 -0.0009018 0.1417886 -0.0009018 0.1417886 ∑∑= iii wywy*
 

6 2 0.0505758 0.156876 0.1011515 0.313752 = 0.1354477 Radians 

7 1 0.0083679 0.1214458 0.0083679 0.1214458 = 07º 45' 38" E 

8 1 -0.0190823 0.1475482 -0.0190823 0.1475482  

 10   0.1035853 1.3544773  

Based on the calculation performed in Table 2, the initial optimal location of the central warehouse will be at 00º 35' 
37"N, 07º 45' 38"E. as depicted in figure 3 

 
Figure 3: Location offshore rigs 

Table 3: Calculation of Great Circle Distances based on Geographical Coordinates 
RIG LOCATION (DECIMAL) Trip rS iα=  rw iiα (Km) 

  LATITUDE LONGITUDE    
1 1.6041667 7.6213889 2 113.443 226.886 

2 -2.0075 6.4305556 1 324.831 324.831 

3 0.6772222 9.0905556 1 148.138 148.138 

4 -1.0730556 5.3291667 1 327.769 327.769 

5 -0.0516667 8.1238889 1 82.33 82.33 
6 2.8977778 8.9883333 2 290.295 580.59 
7 0.4794444 6.9583333 1 90.101 90.101 
8 -1.0933333 8.4538889 1 202.794 202.794 

 =*x 0.5935 =*y 7.760583  
rwS

i
i∑

=

=
8

1

α  
1983.439 
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3.2. Findings and Discussion  
The total initial distance (cost) between the initial 
optimal location and all other stations is 1983.439 
Kilometers. The initial position provides valuable 
input for subsequent iterations and decision making 
process taking into account both qualitative and 
quantitative analysis. If a new facility is to be 

constructed the centre of gravity ),( ** yx is an ideal 

location. Alternatively one of the existing facilities 
(rig) can be used for central warehouse. By 
inspection we note that rig 5 is closest to the centre of 
gravity, hence the ideal candidate for second iteration.  

By locating the warehouse at rig 5 we note that 
the total distribution distance (cost) becomes 
2161.965 Km an increase of 178.526 Km as 
compared to locating a new facility at the centre of 
gravity. The additional annual distribution cost 
related to the extra 178.526 Km per week needs to be 
compared to the annual fixed cost of establishing a 
new facility. This will help in establishing the trade-
offs between establishing a new facility and locating 
a warehouse at the existing facilities. Iterations can 
be made for all the remaining facilities and 
evaluations made accordingly. 
 
4. Conclusion 
Analysis made in this paper shows that distances for 
facility location can be modeled more realistically by 
applying the great circle distances concept that takes 
into account the spherical nature of the Earth we live 
in.  The contribution of this paper has been the 
introduction of an alternative approach to distance 
modeling for travel over water in place of Euclidean 
distance by developing an algorithm for deducing 
distances from geographical address defined by the 
grid of latitudes and longitudes and applying 
spherical trigonometry principles in the logistics of 
facility location. As such, the application of “Great 
circle distances” which is very much used in 
navigation and Spherical Trigonometry will 
contribute to advancement of logistics and facility 
location by broadening the scope of the set of 
knowledge from which the logistics discipline 
borrows.  
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