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Abstract 

Mean free path and wavelength of electron at Fermi level for different groups and periods of metals were computed 

and studied based on the theory of free electron formalism using the knowledge of Fermi gas. Result obtained for the 

wavelength of electron at Fermi level is in good agreement with theoretical experimental value. This prove the validity 

of the theory of free electron formalism in theoretical predictions of some properties of metals. Result obtain in this 

work shows that mean free path of metal depend on number of valence electron, electronic concentration and collision 

frequency. Mean free path of metals decreases as strain (deformation) increases due to an increase in electron radius. 

Wavelength of electron at Fermi level reduces as the experimental value of Fermi energy of metals increases. 

Wavelength of electron at Fermi level increases as strain increases due to an increase in the internal degree of freedom. 
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1.0 Introduction 

Solids are classified based on their specific geometrical, 

mechanical and electrical properties. These 

classification helps to recognize the origin of their 

unique properties and to invent new solid with specific 

useful properties (Chih-Tang, 1991). Metals is an array 

of positive ions held together in a cloud of free electrons 

with their valence electrons moving freely. These 

electrons move within the metal due to electrostatic 

attraction between the positive ion cores (Puri and 

Babbar, 2008). Electrons are responsible for conduction 

of electricity through metals. This conduction electron 

move in a uniform electrostatics field and their potential 

energy remains constant by neglecting the existence of 

ion cores (Puri and Babbar, 2008). Mean free path is an 

average distance which an electron covers in its 

wavelike pattern without any reflection or deflection 

(Busch and Schade, 1976) and can also be describe as 

the average distance traveled by a moving particle 

between successive impacts or collisions which modify 

its direction, energy and other particle properties 

(Efthimios, 2003). Fermi wavelength is the de Broglie 

wavelength of electrons at the Fermi energy (Animalu, 

1977). Metals are deformed when subject to an applied 

mechanical stress which change its shapes and sizes 

(Kittel, 1976). Stress is a measure of an applied 

mechanical force normalized to take into account cross 

sectional area while strain represents the amount of 

deformation induced by stress (Kakani and Kakani, 

2004). Before now, different theoretical and 

experimental research work has been performed by 

experimentalist and theorist to study some properties of 

metals using different computational and experimental 

techniques. Jennings (1988) presented the values of 

mean free path at different temperature for dry and moist 

air using an expression that minimizes the dependence 

on physical constants for mean free path. Result 

obtained agree quite well with the result of Cunningham 

slip correction factor when compared. Sooraj et. al (2013) 

determined the mean free path of rarefied gases using 

Molecular Dynamics simulations. The simulations are 

carried out on isothermal argon gas (Lennard-Jones fluid) 

over a range of rarefaction levels under various 

confinements (unbounded gas, parallel reflective wall 

and explicit solid platinum wall bounded gas) in a 

nanoscale domain.  These studies provide insight to the 

transport phenomena of rarefied gases through 

nanochannels with potential in microscale and 

nanoscale heat transfer applications. Seunghwan (2019) 

use Monte Carlo (MC) simulation data to estimate the 

average mean–free–path length of multicomponent 

hydrocarbon molecules in an organic nanochannel base 
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on equilibrium distribution of gas molecule. The results 

obtain show that the smaller the channel the denser the 

gas mixture due to nanoconfinement effects. The mean–

free–path lengths of the confined molecules is also 

computed using the trajectories of the molecules 

displaced over time in the equilibrium molecular 

dynamics (MD) simulation. Qixin and Zhivong (2014) 

studies the characteristics of gas molecular mean free 

path in nanopores using molecular dynamics simulation. 

The results obtain indicate that mean free path of all 

molecules in nanopores depend on the radius of the 

nanopore and interaction strength. The molecular mean 

free path varies with the molecule’s distance from the 

center of the nanopore. The least value of the mean free 

path occurs at the wall surface of the nanopore. The 

radial gas molecular mean free path is much smaller than 

the mean free path including all molecular collisions 

occurring in three directions. Results obtain indicate that 

when gas is confined in nanopores the gas molecule 

density does not affect the gas molecular mean free path 

in the same way as it does for the gas in unbounded 

space. Nishanth et. al. (2010) derive an effective 

molecular mean free path model that allows the mean 

free path to vary close to bounding surfaces. This model 

is compared with molecular dynamics simulation data 

and other classical mean free path models of gas 

transport properties related to the mean free path through 

kinetic theory. Result obtained is compared with that of 

conventional hydrodynamic models, solutions of the 

Boltzmann equation and experimental data. It was found 

that probability distribution function describes better the 

mean free paths of dilute gas molecules in a confined 

system. Adesakin et. al. (2020) used a theoretical model 

approach to compute magnetic moment of metals based 

on free electron theory. The result obtained agree quite 

well with experimental value, this suggest that free 

electron theory is useful for theoretical prediction of 

some properties of metals. The results obtained shows 

that magnetic moment of metals depends on spin and 

orbital configuration. Magnetic field influence magnetic 

moment of metals due to rotation of magnetic dipole and 

that magnetic field in metals is weakened by induced 

magnetization. Magnetic moment of metals subjected to 

deformation decreases as strain increases. Magnetic 

moment of metals is determined by ratio of valence 

electrons to their number of atoms. Magnetic moment of 

all metals computed is negative, this is due to spin 

intrinsic properties and negative electric charge possess 

by electrons in metal.  Adesakin et. al. (2012) develop a 

model for computing correlation, binding and cohesive 

energy of deformed and undeformed metals based on 

structureless pseudopotential formalism. Results 

obtained showed that correlation energy increases with 

increase in electron density parameter. An increase in 

deformation was found to cause corresponding increase 

in the correlation energy. Deformation causes a decrease 

in the binding energy of metals and it does not cause a 

significant change in the cohesive energy of metals. 

Adesakin et. al. (2018) develop a model for computing 

relaxation time, Fermi velocity and Fermi temperature 

of deformed metals based on free electron theory. The 

result obtained shows qualitative agreement between the 

experimental and computed values of Fermi velocity, 

Fermi temperature and relaxation time of metals when 

compared. The Fermi velocity, Fermi temperature and 

relaxation time of all the metals subjected to different 

deformation decreases as deformation increases. This 

suggest that as deformation increases the collision 

frequency, inter-atomic spacing between the interacting 

electron decreases which forces the relaxation time, 

Fermi velocity and Fermi temperature to decrease as 

deformation increases.  

 

2.0 Computational methods  

A more accurate calculation of the electronic properties 

of metals is obtained from Schrodinger equation for N-

particle wave function of all N electrons in metals 

𝜓(𝑟1𝑠1, 𝑟2𝑠2, … … … 𝑟𝑁𝑠𝑁)  

𝐻𝜓 = ∑ (−
ℏ2

2𝑚
∇𝑖

2𝜓 − 𝑍𝑒2 ∑
1

|𝑟𝑖−𝑅|𝑅 𝜓)𝑁
𝐼=1 +

1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗 𝜓 = 𝐸𝜓   

 (1) 

where the negative potential energy term is the attractive 

electrostatic of bare nuclei fixed at points R of Bravais 

lattice and the last term is the interactions of the 

electrons with each other. The proper choice of the 

potential U(r) in the one-electron Schrodinger equation 

is 

−
ℏ2

2𝑚
∇2𝜓(𝑟) + 𝑈(𝑟)𝜓(𝑟) = 𝜀𝜓(𝑟)   

     (2) 

where U(r) is the potentials of ions given as 

𝑈𝑖𝑜𝑛(𝑟) = −𝑍𝑒2 ∑
1

|𝑟−𝑅|𝑅     

     (3) 

By treating the remaining electrons as a smooth 

distribution of negative charge with charge density 𝜌, 

the potential energy of the given electron in their field is 

𝑈𝑒𝑙(𝑟) = −𝑒 ∫ 𝑑𝑟′𝜌(𝑟′)
1

|𝑟−𝑟′|
   

     

 (4) 

The contribution of an electron in the level 𝜓𝑖  to the 

charge density is 

𝜌𝑖(𝑟) = −𝑒|𝜓𝑖(r) |2    

     

 (5) 

The total charge density is  

𝜌(𝑟) = −𝑒 ∑ |𝜓𝑖(r) |2
𝑖     

     

 (6) 
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and the sum extends over all occupied one electron 

levels in metal. 

Substituting equation (6) into equation (4) and letting 

𝑈 = 𝑈𝑖𝑜𝑛 + 𝑈𝑒𝑙 gives the one-electron equation 

−
ℏ2

2𝑚
∇2𝜓𝑖(𝑟) + 𝑈𝑖𝑜𝑛(𝑟)𝜓𝑖(𝑟) +

[𝑒2 ∑ ∫ 𝑑𝑟′|𝜓𝑗(𝑟′)|
2 1

|𝑟−𝑟′|𝑗 ] 𝜓𝑖(𝑟) = 𝜀𝑖𝜓𝑖(𝑟) 

  (7) 

where the potential of the ions is precisely canceled by 

𝑈𝑖𝑜𝑛 + 𝑈𝑒𝑙 = 0, only the exchange term survives and is 

easily evaluated by writing the coulomb interaction in 

terms of its Fourier transform 
𝑒2

|𝑟−𝑟′|
= 4𝜋𝑒2 1

𝑉
∑

1

𝑞2 𝑒𝑖𝑞−(𝑟−𝑟′) →𝑞

4𝜋𝑒2 ∫
𝑑𝑞

(2𝜋)3

1

𝑞2 𝑒𝑖𝑞−(𝑟−𝑟′)    

 (8) 

Then 𝜀(𝑘) =
ℏ2𝑘2

2𝑚

1

𝑉
∑

4𝜋𝑒2

|𝑘−𝑘′|2 =
ℏ2𝑘2

2𝑚
−𝑘′<𝑘𝐹

∫
𝑑𝑘′

(2𝜋)3

4𝜋𝑒2

|𝑘−𝑘′|2 =
ℏ2𝑘2

2𝑚
−

2𝑒2

𝜋
𝑘𝐹𝐹 (

𝑘

𝑘𝐹
)  

 (9) 

and 𝐹(𝑥) =
1

2
+

1−𝑥2

4𝑥
𝑙𝑛 |

1+𝑥

1−𝑥
|    

     

 (10) 

equation (9) is the energy of the one electron level with 

wave vector k.  

The contribution of interaction to the total energy of N-

electron is the sum of this correction over all 𝑘 < 𝑘𝐹. 

𝐸 = 2 ∑
ℏ2𝑘2

2𝑚𝑘<𝑘𝐹
−

𝑒2𝑘𝐹

𝜋
∑ [1 +

𝑘𝐹
2−𝑘2

2𝑘𝑘𝐹
𝑙𝑛 |

𝑘𝐹+𝑘

𝑘𝐹−𝑘
|]𝑘<𝑘𝐹

 

     (11) 

To find the velocity distribution for electrons in metals, 

consider a small volume element of k-space about a 

point k of volume dk. Allowing for two-fold spin 

degeneracy, the number of one-electron levels in this 

volume element is  

𝑁 = (
𝑉

4𝜋3) 𝑑𝑘     

     

 (12) 

The probability of each level being occupied is 𝑓(𝜀(𝑘)) 

and the total number of electrons in k-space volume is  

N=
𝑉

4𝜋3  𝑓(𝜀(𝑘))𝑑𝑘    

     

 (13) 

where 𝜀(𝑘) = ℏ2𝑘2

2𝑚⁄  and the velocity of free 

electron with wave vector k is 

𝑉 =
ℏ𝑘

𝑚
      

     

 (14) 

The number of electrons in an element of volume dv 

about v is the same as the number in an element of 

volume 𝑑𝑘 = (𝑚
ℏ⁄ )

3

𝑑𝑣 about 𝑘 =
𝑚𝑉

ℏ
.  

Consequently, the total number of electrons per unit 

volume of real space in a velocity space element of 

volume dv about v is  

𝑁 = 𝑓(𝑣)𝑑𝑣     

     

 (15) 

where 𝑓(𝑣) =
(𝑚

ℏ⁄ )
3

4𝜋3

1

𝑒𝑥𝑝[
(1

2⁄ 𝑚𝑣2−𝜇)
𝑘𝐵𝑇

⁄ ]+1

   

     (16) 

the Fermi energy 𝐸𝐹 is defined as 

𝐸𝐹 =
ℏ2𝑘𝐹

2

2𝑚
     

     

 (17) 

Fermi energy at absolute zero is equals the chemical 

potential 𝜇  defined as the change in energy of a 

thermodynamic electronic system of N particles when 

one extra electron is added to it 

𝜇 = 𝐸(𝑁 + 1) − 𝐸(𝑁)    

     

 (18) 

The temperature variation of Fermi energy become 

𝐸𝐹(𝑇) = 𝐸𝐹 [1 −
𝜋2

12
(

𝑘𝐵𝑇

𝐸𝐹
)

2

]   

     

 (19) 

Expressing the Fermi characteristics in terms of electron 

density parameters 𝑟𝑠 , the wavelength of electron at 

Fermi level and mean free path is 

𝜆𝐹 = 2𝜋 (
4

9𝜋
)

1
3⁄

𝑟𝑠 =
2𝜋

𝑘𝐹
    

     (20) 

and 

𝛾 =
𝑚𝑒

𝑛𝑒2𝜌
√2𝐸𝐹     

     

 (21) 

where 𝑘𝐹  is the Fermi wave-vector, 𝑚𝑒  is the mass of 

electron, n is the electronic concentration, e is the 

electronic charge and 𝜌 is the electrical resistivity. In 

this article, free electron theory approximation is used to 

compute the wavelength of electron at Fermi level and 

mean free path of metals using equation (20) and (21) 

and how wavelength of electron at Fermi level and mean 

free path of metals varies with linearly applied strain is 

investigated. 

3.0 Result and Discussion 

 

Figure 1 shows the plot of mean free path as a function 

of electron density parameter for different groups and 

periods of metals. Figure 1 revealed that mean free path 

of metals increases as the electron density parameter 

increases. This suggest that mean free path of metal 

depend on number of valence electron and electronic 

concentration. The trend demonstrated by metals in 
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figure 1 also revealed that mean free path of metals 

depend on collision frequency as the electron in metals 

whose mean free path were computed is more 

concentrated in the region of high-density limit than low 

density limit. Another factor that may be responsible for 

the increase in mean free path of metals in figure 1 may 

be due to an increase in the distance between the 

electrons in metal.  Furthermore, the trend display by 

metals in figure 1 seems to suggest that the lower the 

number of electron per unit volume in metals the lower 

the mean free path of electron in metal and the higher 

the number of electron per unit volume in metals the 

higher the mean free path of electron in the metal. Figure 

2 shows the plot of mean free path as a function of strain 

for different groups and periods of metals. Figure 2 

revealed that mean free path of metals decreases as 

strain (deformation) increases. This may be due to 

reduction in electron strength in metals. The trend 

display by metals in figure 2 may also be due to weak 

electron localization that forces the mean free path of 

metals to decrease as strain increases. Figure 3 shows 

the plot of wavelength of electron at Fermi level as a 

function of experimental Fermi energy of metals. Figure 

3 revealed that wavelength of electron at Fermi level 

reduces as the experimental Fermi energy of metals 

increases, with metals in the region of high- density limit 

having high value of wavelength of electron at Fermi 

level than metals in the region of low- density limit. This 

may be due to the fact that wavelength of electron at 

Fermi level depend highly on valence electron and 

effective distance between the electron in metals. In 

figure 3 there is a good agreement between the 

computed and experimental value of wavelength of 

electron at Fermi level. The experimental value of 

wavelength of electron at Fermi level is theoretically 

obtained by directly substituting the experimental value 

of Fermi energy obtained from solid state Physics by 

Charles Kittel, 1976 into the model used for 

computation. Figure 4 shows the plot of wavelength of 

electron at Fermi level as a function electron density 

parameter for metals from different groups and periods. 

Figure 4 revealed that there is a rapid linear increase in 

the wavelength of electron at Fermi level of metals from 

the region of high-density limit to low density limit. The 

electron in metals are more concentrated in the region of 

high-density limit than low density limit. These suggest 

that wavelength of electron at Fermi level depend highly 

on effective distance between electron and number of 

valence electron per atom in metals. In figure 4, the 

computed and experimental value of wavelength of 

electron at Fermi level agree quite well with each other. 

The trend display by metals in figure 3 and 4 indicate 

that wavelength is inversely related to frequency and as 

well validate free electron theory formalism as a useful 

tool that can be relied upon in theoretical prediction of 

some properties of metals. Figure 5 shows the plot of 

wavelength of electron at Fermi level as a function of 

strain for metals from different groups and periods. 

Figure 5 revealed that wavelength of electron at Fermi 

level increases as strain increases. This may be due to an 

increase in the internal degree of freedom and the 

dynamics of electron near the Fermi level. Another 

factor that may be responsible for the increase in the 

wavelength of electron at Fermi level as strain increases 

is the increase in the energy of carrier electron, electron-

electron scattering and phase randomizing of electron in 

metals. In conclusion, the trend demonstrated by metals 

in figure 5 indicates that wavelength of electron at Fermi 

level is highly influence by strain (deformation).  

Conclusion 

The mean free path and wavelength of electron at Fermi 

level has been evaluated by using the theory of free 

electron formalism. We obtain a good agreement 

between computed and experimental value of 

wavelength of electron at Fermi level. Mean free path of 

metals increases as the electron density parameter 

increases because of the increase in the electron inter-

atomic distance. Mean free path of metals decreases as 

strain increases due some factors the it depends upon 

that is highly affected by deformation. Wavelength of 

electron at Fermi level depend highly on the effective 

distance between the electron in metals and the valence 

electron. wavelength of electron at Fermi level increases 

as strain increases due to an increase in the internal 

degree of freedom and the dynamics of electron near the 

Fermi level.
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Figure 1: Mean Free Path as a function of Electron Density Parameter of Metal 
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Fig.  20:  Variation of mean free path with strain for some metals
 

Figure 2: Mean Free Path as a function of Strain for Metals 
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Figure 3: Wavelength of Electron at Fermi Level as a function of Experimental Fermi Energy of Metals 
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Figure 4: Wavelength of Electron at Fermi Level as a Function of Electron Density Parameter of Metals 
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Fig. 30:  Variation of wavelength of electron at Fermi level with strain for some metals 
 

Figure 5: Wavelength of Electron at Fermi Level as a function of Strain for Metals. 

 

Table 1: Mean Free Path of Strained (Deformed) Metals  

                                                           Strain 

Metals rs (a.u) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

K 4.96 0.115 0.108 0.102 0.096 0.092 0.087 0.084 0.080 0.077 

Cu 2.67 0.400 0.374 0.352 0.333 0.316 0.301 0.288 0.276 0.266 

Ag 3.02 0.313 0.292 0.275 0.260 0.247 0.236 0.225 0.216 0.208 

Be 1.87 0.516 0.482 0.454 0.429 0.408 0.389 0.372 0.357 0.343 

Mg 2.65 0.257 0.240 0.226 0.214 0.203 0.194 0.185 0.178 0.171 

Cr 1.86 0.522 0.488 0.459 0.434 0.412 0.393 0.376 0.360 0.347 

Fe 2.12 0.401 0.375 0.353 0.334 0.317 0.302 0.289 0.277 0.267 

Ni 2.07 0.421 0.394 0.370 0.350 0.333 0.317 0.303 0.291 0.280 

Zn 2.31 0.338 0.316 0.297 0.281 0.267 0.255 0.244 0.234 0.225 

Cd 2.59 0.269 0.251 0.237 0.224 0.213 0.203 0.194 0.186 0.179 

Al 2.07 0.322 0.301 0.283 0.268 0.255 0.243 0.232 0.223 0.214 

Bi 2.25 0.563 0.527 0.495 0.469 0.445 0.424 0.406 0.389 0.374 

Ti 1.92 0.375 0.350 0.329 0.312 0.296 0.282 0.270 0.259 0.249 

Y 2.61 0.203 0.190 0.178 0.169 0.160 0.153 0.146 0.140 0.135 

Sn 2.22 0.232 0.217 0.204 0.193 0.183 0.175 0.167 0.160 0.154 

Pb 2.30 0.216 0.202 0.190 0.180 0.171 0.163 0.156 0.149 0.143 

Mo 1.61 0.337 0.315 0.297 0.280 0.266 0.254 0.243 0.233 0.224 

W 1.62 0.376 0.351 0.330 0.312 0.297 0.283 0.271 0.260 0.250 

Au 2.39 0.173 0.161 0.152 0.144 0.136 0.130 0.124 0.119 0.115 

Pt 2.00 0.285 0.267 0.251 0.238 0.226 0.215 0.206 0.197 0.190 

Ta 2.84 0.098 0.092 0.086 0.081 0.077 0.074 0.071 0.058 0.065 
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Table 2: Wavelength of Electron at Fermi Level for Strained (Deformed) Metals  

                                                           Strain 

Metals rs (a.u) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

K 4.96 16.86 17.44 17.98 18.48 18.97 19.42 19.86 20.28 20.68 

Cu 2.67 9.08 9.39 9.68 9.95 10.21 10.45 10.69 10.92 11.13 

Ag 3.02 10.27 10.62 10.94 11.25 11.55 11.83 12.09 12.35 12.59 

Be 1.87 6.36 6.57 6.78 6.97 7.15 7.32 7.49 7.65 7.80 

Mg 2.65 9.01 9.32 9.60 9.88 10.13 10.38 10.61 10.83 11.04 

Cr 1.86 6.32 6.54 6.74 6.93 7.11 7.28 7.45 7.60 7.76 

Fe 2.12 7.21 7.45 7.68 7.90 8.11 8.30 8.49 8.67 8.84 

Ni 2.07 7.04 7.28 7.50 7.71 7.92 8.11 8.29 8.46 8.63 

Zn 2.31 7.85 8.12 8.37 8.61 8.83 9.05 9.25 9.44 9.63 

Cd 2.59 8.80 9.10 9.39 9.65 9.90 10.14 10.37 10.59 10.80 

Al 2.07 7.04 7.28 7.50 7.71 7.92 8.11 8.29 8.46 8.63 

Bi 2.25 7.65 7.91 8.15 8.38 8.60 8.81 9.01 9.20 9.38 

Ti 1.92 6.53 6.75 6.96 7.16 7.34 7.52 7.69 7.85 8.01 

Y 2.61 8.87 9.17 9.46 9.73 9.98 10.22 10.45 10.67 10.88 

Sn 2.22 7.55 7.80 8.05 8.27 8.49 8.69 8.89 9.08 9.26 

Pb 2.30 7.82 8.09 8.34 8.57 8.79 9.01 9.21 9.40 9.59 

Mo 1.61 5.47 5.66 5.83 6.00 6.16 6.30 6.45 6.58 6.71 

W 1.62 5.51 5.69 5.87 6.04 6.19 6.34 6.49 6.62 6.75 

Au 2.39 8.12 8.40 8.66 8.91 9.14 9.36 9.57 9.77 9.97 

Pt 2.00 6.80 7.03 7.25 7.45 7.65 7.83 8.01 8.18 8.34 

Ta 2.84 9.65 9.98 10.29 10.58 10.86 11.12 11.37 11.61 11.84 

 

Table 3: Mean Free Path and Wavelength of Electron at Fermi Level for Undeformed Metals 

Metals Electron 

Density 

Parameter 

rs(a.u) 

Experimental 

Fermi Energy 

(Hartree) 

Mean Free 

Path 

(Hartree) 

Wavelength of Electron at Fermi Level 

(Hartree) 

  Experimental Value Computed Value 

K 4.96 0.0779 42.4639 15.9062 16.2192 

Cu 2.67 0.2572 36.3728 8.75384 8.73090 

Ag 3.02 0.2014 37.5104 9.89246 9.87540 

Be 1.87 0.5196 33.2744 6.15885 6.11490 

Mg 2.65 0.2620 36.3045 8.67328 8.66550 

Cr 1.86 - 33.2298 - 6.08220 

Fe 2.12 0.4079 34.3347 6.95116 6.93240 

Ni 2.07 - 34.1304 - 6.76890 

Zn 2.31 0.4043 35.0794 6.98204 7.55370 

Cd 2.59 0.2742 36.0973 8.47813 8.46930 

Al 2.07 0.4274 34.1304 6.79073 6.76890 

Bi 2.25 0.3638 34.8494 7.36042 7.35750 

Ti 1.92 - 33.4946 - 6.27840 

Y 2.61 - 36.1668 - 8.53470 

Sn 2.22 0.3686 34.7326 7.31234 7.25940 

Pb 2.30 0.3443 35.0414 7.56598 7.52100 

Mo 1.61 - 32.0521 - 5.26470 

W 1.62 - 32.1017 - 5.29740 

Au 2.39 0.2025 35.3793 9.86555 7.81530 

Pt 2.00 - 33.8382 - 6.54000 

Ta 2.84 - 36.9385 - 9.28680 
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