Nature and Science

MARSLAND PRESS
Multidisciplinary Academic Journal Publisher

On tachyon physics

\author{

* Kalimuthu, S, ** Raghul Kumar, K, +Marshal Anthony, S, and \#Sivasubramanian, M
 * 2/394, Kanjampatti P.O, Pollachi Via, Tamil Nadu 642003, India Corresponding author email: owlskalimuthu@gmail.com
 + Assistant Professor of Mathematics, Anna University, Coimbatore, Tamilnadu, India \# Department of Mathematics, Government Arts College, Udumalpet, Tamil Nadu 642003, India
 ** Department of physics, NGM College, Pollachi, Tamil Nadu 642001, India
}

Abstract

In this brief note, the authors attempt to show that Einstein's variance of mass with velocity equation doest permit the existence or generation of tachyon particles/objects. [Kalimuthu, S, Raghul Kumar, K, +Marshal Anthony, S, and \#Sivasubramanian, M. On tachyon physics. Nat Sci 2 021, 19(12):28-31]. ISSN 1545-0740 (print); ISSN 2375-7167 (online). http://www.sciencepub.net/nature 5. doi:10. 7537/marsnsj191221.05.

Key words: Real, positive, negative and imaginary numbers and quadratic equations

MSC: 08C99 PACS: 02.40 Dr.
i
Let $\quad m=\frac{1}{\underline{1}}$ where i is imaginary, m and n are real

$$
\begin{equation*}
(1-n)^{2} \tag{1}
\end{equation*}
$$

Squaring $\quad m^{2}(1-n)=i^{2}$

Replacing I by $-1, \quad m^{2}(n-1)=1$

$$
\begin{array}{ll}
\text { i.e., } & \\
& m^{2} n=m^{2}+1 \tag{4a}\\
& \therefore \quad n=1+\frac{1}{m^{2}}
\end{array}
$$

Multiplying (3) by $(\mathrm{n}+1)$, i.e., $\quad m^{2}\left(n^{2}-1\right)=n+1$

$$
\begin{equation*}
m^{2} n^{2}-m^{2}-n-1=0 \tag{5}
\end{equation*}
$$

Equation (5) is quadratic in n

$$
\begin{align*}
\therefore \mathrm{n} & =\frac{1 \pm\left[1+4 m^{4}+4 m^{2}\right]^{2}}{2 m^{2}} \\
& =\frac{1 \pm\left[\left(2 m^{2}+1\right)^{2}\right]^{2^{-}}}{2 m^{2}} \\
\mathrm{n} & =\frac{1 \pm 2 m^{2}+1}{2 m^{2}} \tag{6}
\end{align*}
$$

Taking positive value, $\mathrm{n}=$

$$
\begin{equation*}
\frac{2+2 m^{2}}{2 m^{2}} \text {, i.e., } \mathrm{n}=1+{ }^{1} \frac{}{m^{2}} \tag{6a}
\end{equation*}
$$

Taking negative value in (6), $\quad n=-1$.

According to the laws of quadratic equations the roots, $\alpha+\beta=-\mathrm{B} / \mathrm{A}$ and $\alpha \beta=\mathrm{C} / \mathrm{A}$.

So, $\quad \alpha+\beta+\alpha \beta=\frac{C-B}{A}$.Applying this relation in (5)

$$
\begin{array}{cc}
\alpha+\beta+\alpha \beta= & \frac{C-B}{A}=-1 \\
\text { i.e., } & \alpha+\beta+\alpha \beta+1=0 \\
\text { i.e., } & \alpha(1+\beta) \quad+(1+\beta)=0 \\
\text { i.e., } & (1+\alpha)(1+\beta)=0 \\
\text { i.e., } & \alpha=-1 \tag{7b}
\end{array}
$$

(7) and (7b) are one and the same result.

From (7a) we get, $\quad(1+\beta)=0$
Putting (6a) in the above relation, $\quad 1+\frac{1}{m^{2}}+1=0$

$$
\text { i.e., } \quad 2 m^{2}+1=0
$$

$$
\text { i.e., } \quad m^{2}=\frac{-1}{2}
$$

Taking square root on both sides, $\mathrm{m}=\quad \frac{i}{\sqrt{2}}$
$\operatorname{Applying}(8)$ in (1), $\quad \frac{i}{\sqrt{2}}=\frac{i}{(1-n)^{2}}$
Squaring on both sides,

$$
\begin{align*}
& \quad \frac{i^{2}}{2}=\frac{i^{2}}{1-n} \\
& \text { i.e., } \quad \mathrm{n}=-1 \tag{9}
\end{align*}
$$

(7) and (9) are one and the same.

The above analysis establishes that α and β are distinct.
According to the laws of quadratic
equations of the general form $A x^{\wedge} 2+B x+C=0$, the roots are distinct iff $\mathrm{B}^{\wedge} 2-4 \mathrm{AC}=0$

Assuming (11) in (5),
$1+4 m^{2}+4 m^{4}=0(1+$
i.e.,
I.e.,

$$
\left.2 m^{2}\right)^{2}=0
$$

$$
1+2 m^{2}=0
$$

i.e.

$$
m^{2}=\frac{-1}{2}
$$

Taking square root on both sides, $\mathrm{m}=\quad \frac{i}{\sqrt{2}}$

Equations (8) and (12) are one and the same.
Putting (12) in (1) we have $\mathrm{n}=-1$

Putting $n=-1$ in (5) the equation satisfies.
The above analysis shows as clear as crystal that $n=-1$
. is the only consistent solution for (5)

Discussion

To conclude in brief, eqn. (14) does not permit the existence or generation of tachyons.

References:

en.wikipedia.org/wiki/Imaginary_number - 45k -
mathforum.org/dr.math/faq/faq.imag.num.html - 8k-
mathworld.wolfram.com/ImaginaryNumber.html - 21k
www.math.utoronto.ca/mathnet/answers/imaginary.html - 7k
www.math.utoronto.ca/mathnet/answers/imaginary.html - 7k
.betterexplained.com/articles/a-visual-intuitive-guide-to-imaginary-numbers/ - 115k -
www.jimloy.com/algebra/imaginar.htm - 7k en.wikipedia.org/wiki/Quadratic
equation - 78k - mathworld.wolfram.com/QuadraticEquation.html - 51k -
www.hitxp.com/math/alg/071202.htm - 21k -
www.authorstream.com/Presentation/psysolution-23210-Quadratic-Equation- ppt-
Education-powerpoint/ - 180k
questionbank.4gmat.com/mba_prep_sample_questions/quadratic_equation/ - 17k -www.wiziq.com/online-class/132451-Quadratic-Equations - 94k -

5/6/2021

