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Abstract: In this work, a generalized approach for computing the strain energy density of metals and the effects of 
deformation on it based on the structureless pseudopotential formalism is presented. The approach was used to 
compute the strain energy density of some metals and it variation with deformation was studied. The results 
obtained revealed that strain energy density of metals varies in an irregular manner with electron density parameter. 
Metals in the high-density limit have high values of strain energy density while metals in the low density limit have 
low values of strain energy density. Furthermore, the variation of strain energy density with deformation varies in 
different manner for different metals depending on the nature and intrinsic properties of the metals.  
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1.0 Introduction  

Metals achieve structural stability by letting their 
valence electrons roam freely through the crystal 
lattice. These valence electrons are the equivalents of 
the molecules of an ordinary gas. It is assumed that the 
electrons are moving about at random and colliding 
frequently with the residual ions (Pillai, 2010). Surface 
energy of solids is one of the important electronic 
properties of solid surfaces and controls a wide range 
of phenomenon such as stress for brittle fracture, the 
rate of sintering and the growth rate during particle 
coarsening. Surface energy is the energy require to 
create unit area of new surface and can also be 
described as the amount of work per unit area required 
to split an infinite crystal into two halves (Kiejna and 
Pogosov,1999). Surface stress is the solid state 
analogue of surface tension. Surface stress originates 
from the nature of chemical bonding of atoms at the 
metallic surface. The atoms at the surface of an 
undeformed metal would have equilibrium inter 
atomic distance different from that of the interior 
atoms if the surface atoms were not constrained to 
remain structurally coherent with the underlying 
lattice (Cammarata, 1994). Atoms at the surface and 
interior of metals changes during deformation along 
with their atomic distance depending on the metallic 
surface area that is subjected to different deformation 
(Sanders, 2003). Deformation is the change in the 
shape or size of an object during stress or strain. The 
study of the elastic behaviour of a solid is very 
important in fundamental technical research. In 

technology, it tells us about the strength of the 
materials and is of interest because of the insight it 
provides into the nature of the binding forces in solids. 
The relevant elastic constants also relate themselves to 
thermal properties like Debye temperature. The elastic 
properties of a homogenous crystal are generally 
anisotropic. In a cubic crystal, the relationship 
between stress and strain depends on the orientation of 
the crystal axes relative to stress system (Kachhava, 
1992). As a result of the anisotropy of crystals, the 
atoms of any crystal can be deformed in a variety of 
ways that can be decomposed into three types of 
independent deformations viz, uniform compression 
associated with the bulk modulus or compressibility 
and two shears in both of which the volume is 
unchanged (Animalu, 1977). Mathematically, any 
lattice deformation can be characterized by a second-

rank tensor , called a strain tensor which has three 
independent components in a system with cubic 
symmetry (Animalu, 1977). 

The concept of strain energy is of fundamental 
importance in applied mechanics. The application of 
the stress in a metallic string produces strain. The 
effect of this strain is to increase the energy level of 
the string itself. Strain energy is stored within an 
elastic solid when the solid is deformed under load. In 
the absence of energy losses, such as from friction,
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damping or yielding, the strain energy is equal to the 
work done on the solid by external loads. Strain 
energy is a type of potential energy. The energy stored 
in a body due to deformation is called the strain 
energy. The strain energy per unit volume is the strain 
energy density. The strain energy density at the yield 
point is the modulus of resilience. The strain energy 
density at rupture is modulus of toughness. Strain 
energy or strain energy density is a scalar quantity 
(Gavin, 2011). Consequently, a lot of efforts have 
been made to study the effects of deformation on some 
properties of selected metals. Adeshakin and Osiele 
(2012) developed a model for computing the surface 
energy and surface stress of deformed metals based on 
the structureless pseudo potential formalism. The 
developed models were tested by using them to 
compute the surface energy and surface stress of 
different classes of metals for different values of strain 
deformation. The results obtained revealed that 
deformation causes a reduction of surface energy and 
this reduction in surface energy is more pronounced in 
simple and alkaline metals. For surface stress of 
deformed metals, tensile stress is present in most 
metallic surfaces, although a few metals possess 
compressive stress on their surfaces. In the presence of 
deformation, the surface stress of some metals 
decreases. For Ti and Pt, deformation causes an 
increase in their surface stress, while deformation 
causes an increase in the surface stress of Mo and W 
causing the stress on their surfaces to change from 
compressive to tensile. But for Cr, Be and Al, the 
stress on their surfaces changes depending on the 
amount of deformation. Adeshakin et al., (2012), 
developed a model based on the structureless 
pseudopotential to compute the correlation, binding 
and cohesive energy of deformed and undeformed 
metals. The computed binding and cohesive energy of 
metals were compared with available experimental 
values. The results obtained showed that correlation 
energy increases with increase in electron density 
parameter. The computed binding energy and cohesive 
energy of metals were in good agreement with 
experimental values. The results obtained also showed 
that deformation causes a decrease in the binding 
energy of metals and it does not cause a significant 
change in the cohesive energy of metals, although 
transition metals have high values of cohesive energy 
compared to alkaline and simple metals. Keijna and 
Pogosov, (2000) experimentally investigated the effect 
of deformation on some electronic properties of metals 
by measuring directly a sample of deformed metals 
using Kelvin method. They observed that the contact 
potential difference of metals increase/decreases when 
compressed/tensed. Shore and Rose (1991), calculated 
the surface properties of metals based on ideal-metal 
model. The results of the calculated surface properties 

are in agreement with experimental results but have 
slightly less satisfactory agreement for bulk properties 
than that of the structureless pseudopotential model of 
Perdew et al., (1990). Sarria et al., (2000), calculated 
the surface energy of metals based on the quantum 
size effects using structureless pseudopotential 
formalism. They found that the surface energy of 
metals increase rapidly at high valence electron 
density. Their results were in good agreement with 
experimental results. They also calculated the self – 
consistent surface energy of stabilized jellium using 
the local – density approximation. The results obtained 
were compared with those obtained for a semi – 
infinite stabilized jellium and were found to be in good 
agreement. Lang and Kohn (1971), theoretically 
calculated the face dependent surface properties of 
metals based on electron densities determined for 
jellium based on perturbation theory. The results 
obtained shows that the surface properties of metals 
are greatly influenced by deformation is in agreement 
with experimental results. Kiejna and Pogosov (1999), 
theoretically determined the effect of deformation on 
the surface properties of metal, based on stabilized 
jellium model, and derived modified equations for the 
stabilization energy of the deformed Wigner Seitz cell 
as a function of the bulk electron density and the given 
deformation. They used the electron density 
parameter, Poisson ratio and young’s modulus of the 
metals as the input parameter. The results obtained 
were in agreement with experimental values. Pogosov 
and Shtepa (2006), calculated the surface stress and 
the contact potential difference of elastically deformed 
metals based on structureless pseudopotential model 
using self-consistent Kohn Sham method. The results 
of surface stress obtained were in agreement with 
experimental results, and also confirmed that the 
contact potential difference obtained for the deformed 
metallic surfaces by Kelvin method correspond to 
change in surface potential. Osiele and Edenma 
(2009), developed a model to compute the bulk 
modulus and kinetic energy contribution to the bulk 
modulus of metals based on structureless 
pseudopotential model. The computed bulk modulus 
of metals were in good agreement with experimental 
values for metal in low density limit and the 
agreement between the computed and experimental 
bulk modulus of metals decreases towards the high 
density limit. The results also revealed that the kinetic 
energy contributes significantly to the bulk modulus of 
metals. Osiele and Olubosede (2007) developed a 
stabilized jellium model to compute the surface stress 
and face dependent surface stress of metals. The 
surface stress of metals, computed using the stabilized 
jellium model, was compared with results obtained 
using other methods and available experimental 
values. The results obtained revealed that tensile stress 
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is present on the surfaces of the metals, and metals in 
the high density limit have high strain derivative and 
high values of surface stress while metals in the low 
density limit have low strain derivatives and low 
values of surface stress. Mahan (1975) calculated the 
variational surface energy of the jellium model of a 
metal surface. He used variational parameters which 
only affect the surface properties of the wave 
functions. He obtained the kinetic, electrostatic and 
exchange energies of metals using these wave 
functions. The results were compared with that of 
Lang and Kohn (1971) and it was found to be in good 
agreement. Sarria et al., (2000) investigated the 
quantum size effects on the surface energy the density 
yielding energy stability of metals, by examining the 
thin films of two simple metals (aluminium and 
lithium) in the stabilized jellium model. And found 
that the stabilized jellium model predicts positive 
surface energies that increase rapidly at high electron 
densities as shown by experiment while the, jellium 
model predicts surface energies that are strongly 
negative at these densities. Wojciechowski (1995) 
calculated the bulk properties of the stabilized uniform 
interstitial electron gas in metals. He employ the 
stabilized – jellium model and the use of the bonding – 
valence and interstitial – density parameters. The 
results obtained are quite in good agreement with 
available experimental values. 

Brajczewska et al., (2001) calculated the 
dependence of metals surface properties on the 
valence – electron density in the stabilized jellium 
model whose valence electron density is described by 
the density parameter is as its single input. The results 
obtained were quite in good agreement with available 
experimental results. Skriver and Rosengaad (1992) 
calculated the surface energy for six close – packed 
surfaces of metals based on the linear muffin – tin – 
orbital’s method within the tight – binding and atomic 
sphere approximations. The results of the surface 
energy obtained are in excellent agreement with 
available experimental values.  

In this work the structureless pseudopotential is 
extended to the study of the effects of deformation on 
the strain energy density of some metals. This will 
provide an insight into how the strain energy density 
of metals changes with deformation. The metals were 
chosen based on their technological and industrial 
applications and availability of some physical 
constants that are required for computation.  
 
2.0 Theoretical Consideration 

For a metal under the action of a deforming 
force, the average electron density in such a metal as a 
function of deformation is expressed as (Pogosov and 
Shtepa, 2006). 

 

  2
0 1 (1 2 ) 0 (1 )x x x xn n u u   

 
where  is the Poisson ratio relating compression to elongation in the direction of applied deformation, uxx is 

the applied deformation or strain and  is the average electron density in the bulk of undeformed metal and is given 

as 
3

0 3 4 sn r
 and rs  is the electron density parameter of undeformed metal. For a metal under the action of a 

strain or deforming force, the electron density parameter of the metal is (Adeshakin, 2013) 
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For an elastic material that is being deformed, the strain tensor is  
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Equation (3) is convenient for calculations but its disadvantage is that linear constitutive equations can only be 
used if the solid experiences small rotations as well as small changes in shape.  

The strain can be separated into the elastic strain and thermal strain. 
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where 
T
ij  is the thermal strain and the elastic strain is  
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where E is the Young’s Modulus, v is Poisson ratio,   is stress tensor and   is Kronecker delta.  
The strain energy density is  
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This can be written as 
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Based on the work of Needs and Godfrey (1990), the surface stress can be written as  
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where  (n) is the surface energy and 
3

3 4 sn r
 and rs is the electron density parameter. 

The second term in the right hand of equation (10) is the strain derivative of the surface energy 
which in terms of rsu for a deformed metal can be written as (Needs and Geofrey, 1990) 
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Combining equations (6) and (12), we obtain the expression for computing the strain energy of deformed 

metals according to the structureless pseudopotential model as  
2
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In this work, the surface energy was computed 

based in the parameterized expression of Brajczewska 
et al., (2001).  

In this work, the strain energy density of 
deformed metals will be computed and how 
deformation affects this property of metals will be 
studied. Also the variation of strain energy density 
with electron density parameters will be investigated.  
 
3.0 Results and Discussion 

Figure 1 shows the variation of strain energy 
density with electron density parameter for some 
elemental metals. Fig.1 revealed that strain energy 
density does not exhibit a regular pattern with electron 
density parameter. As revealed in the figure, metals in 
the high density limit have high strain energy density 
and this decrease towards the low –density limit. This 

may be due to the dependence of the strain energy on 
the relative location of the particles or electrons in the 
metals. Also, the observed trend may be due to the 
increase in the volume of the metals from the high 
density limit to the low-density limit.  

Figures 2, 3, 4 and 5 shows the variation of strain 
energy density with deformation for metals of 
different valencies. Fig. 2 reveals that for deformed 
monovalent metals, the strain energy density of 
potassium is least followed by that of silver and 
copper. The strain energy density of potassium, silver 
and copper decreases with increase in deformation. 
This also true for zinc and cadmium in Fig.3, Yitrium 
bismuth and titanium in Fig. 4. Furthermore, the strain 
energy density of the polyvalent metals (metals whose 
valency is grater than three) decreases with increase in 
deformation. The decrease in the strain energy density 
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of the metals with increase in deformation may be a 
consequence of increase in volume of the metals as a 
result of the applied deformation. This further reveals 
that deformation causes a relative large displacement 
of the particles in the metals. The displacement of the 
particles of the metals also depends on the nature of 
the metals. 

In Fig.2, the strain energy density of chromium 
increases with increase in deformation, gets to a 
maximum value, and starts decreasing. The same 
behaviour is exhibited by beryllium in Fig. 3 and 
titanium in Fig. 4. The behaviour of these metals may 
be due to the fact that the respective volume of these 
metals decreases as the deformation increases gets to a 
certain value and starts decreasing after relaxation of 
the metal. This may also be due to the resilience of 
these metals which accounts for the ability of the 
metals to absorb energy within the elastic limit. Also 
in Fig.2, the strain energy density of cadmium and 
nickel increases up to when the deformation is 0.6 and 
starts decreasing. The same behaviour is exhibited by 
aluminium in Fig. 4. This behaviour may be due to the 
ability of the metals to absorb energy without 
fracturing.  

Generally, for the metals used to test the model, 
the variation of strain energy density with deformation 
do not exhibit s general trend. This may be due the 
dependence of strain energy density on the elastic 
properties of the metals through the Young’s modulus, 
the type of stress present in the metals, the electronic 

packing density and the type of bonding between the 
electrons in the metals. 

This work is more general and accurate than the 
work of Kiejna and Pogosov (2000) that computed the 
surface energy, work function, strain derivative and 
surface stress for deformed aluminium and lithium at 
the (100) and (111) faces. The computation of Kiejna 
and Pogosov (2000) was based on the assumption that 
the electron density parameters of deformed and 
undeformed metals are equal, thereby neglecting 
dilation and uniaxial strain. They also assumed a 
Poisson ratio of 0.5 for all the metals, which is an 
upper limit of Possion ratio of metals.  

In our computation, Poisson ratio of different 
metals used in the work was obtained from Gere and 
Timoshenko, 1998. Uniaxial strain was obtained in our 
computation and used to obtain accurate values of 
electron density parameter of deformed metals.  

 
4.0 Conclusion  

In this work, a generalized approach for 
computing and studying the strain energy density of 
metals based on the structureless pseudopotential 
formalism is presented. The variation of strain energy 
density of metals with deformation do not exhibit a 
particular trend. The strain energy density of metals 
depends on some properties of metals such as its 
elasticity, nature of the internal stress in the metal, 
electronic bonding, inter-particle spacing, variation of 
the volume of the metal with deformation and 
resilience of the metals. 
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Fig. 1: Variation of strained energy density with electron density parameter for some metals. 
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Fig. 2: Variation of strain energy density with deformation for some deformed monovalent metals. 
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Fig. 3: Variation of strain energy density with deformation for some deformed divalent metals. 
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Fig. 4: Variation of strain energy density with deformation for some deformed trivalent metals. 
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Fig. 5: Variation of strain energy density with deformation for some deformed Polyvalent metals. 
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