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Abstract: Despite the fact that the fundamental structure of the retina is comparable over all vertebrates, high 
changeability in particular highlights of the fish retina mirrors the distinctions in visual microhabitat of these 
species. The vertebrate retina is the initial phase in the neural coordination of visual data. Three marine teleost fishes 
inhabiting various marine depths specifically Hippocampus hippocampus, Gobius niger and Solea solea (Linnaeus, 
1758) were investigated in a relative investigation of the fine structure of the retina. The ultrastructure and 
association of the components show in all the retinal layers have been examined. The retina demonstrates every one 
of the eight layers and two membranes common place of vertebrates. The current results demonstrated different 
structural components with characteristic photoreceptors mostly of either rods for Hippocampus hippocampus, and 
Solea solea or duplex type, rods and cones, photoreceptors are identified in Gobius niger. It can be concluded that 
the retina of the studied teleost fishes exhibited obvious varying structure reflecting the ultrastructural characteristics 
for stabilizing functional characteristics of visualization affording to the marine habitat depths. 
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1. Introduction 

Visualization is the essential sense organ to 
satisfy the significant practices such as protection, 
nourishment, reproduction and predation (Kim et 
al.,2014; Al -Adhami et al., 2010; Sattari et al.,2012 
and Begum et al., 2013). It is normally used to 
maintain school structure (Bone & Moore 2008). 
Absorption of light by aquatic marine environment 
which is decreased steadily in association with 
increasing in the depth of water which turned to 
become blue at 50 meters (Lythgoe, 1979). Marine 
teleost fishes living in various depths of marine 
environment revealed fluctuating optometric (Schartau 
et al., 2009) and retinal structures (Frohlich & Wagner 
1996 and Heb, 2009). 

One of the most simply manageable parts of the 
central nervous system in vertebrates is the retina. The 
various teleostean retina characteristics attracted the 
attention of numerous scientists (Donatti & Fanta, 
2007 and Al-Adhami et al., 2003). The specific 
characteristics include the variable and enormous 
photoreceptors (Cameron & Easter 1995, Al-Adhami 
& Mir 1999 and Reckel & Melzer, 2003), the peculiar, 
mosaic arrangement of photoreceptors (Cheng & 
Novales Flamerique 2007 and Kim & Park 2016), the 
retinomotor mobility that include several constituents 
of the retina (Donatti & Fanta 2007, Braekevelt et al., 

1998 and McCormack & Donnell, 1994). Finally, the 
retinal regeneration capability (Cameron, 2000) and 
progressing development is well documented 
(Cameron & Carney, 2000 and Raymond & 
Hitchcock, 1997). 

Like different vertebrates, the teleost retina is 
comprised of six unique kinds of neurons and one sort 
of glia cells. Retinal ganglion cells (RGC) are the 
main neurons to be produced trailed by different 
classes of neurons (Al-Adhami et al., 2003). All 
vertebrate retina contains no less than two sorts of 
photoreceptors—the natural rods and cones. Rods are 
large utilized for low-light vision and cones for 
sunshine, brilliant hued vision. Animal eye variations 
reflect the diverse adaptations to their different 
environments. The retina of most fishes, frogs, turtles 
as well as birds have three to five kinds of cones and 
thus great color vision. Cold blooded vertebrates such 
as reptiles and fishes should be dynamic in the warm 
daytime (Donatti & Fanta 2007). The common 
structure of retinal of teleost fishes, has both rod cells 
(scotopic vision) and cone cells (photopic vision) and 
demonstrates a diversity of shape (Fernald, 1988 and 
Bowmaker, 1995) Occasionally, like basic contrasts in 
a few fishes are deliberated as biological and natural 
environments comprising nourishing propensities and 
photic environments (Fernald,1982; Kunz,1980 and 
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Lyall, 1957). what's more, the chasing action of the 
predatory fish (Kim & Park, 2016). 

The retinal pigment epithelium (RPE) is the 
furthest (sclera) layer of the vertebrate retina. 
Normally, it comprises of a solitary layer of cuboidal 
to low columnar epithelial cells, and is identified by its 
characteristic possession of the brownish melanin 
pigments. The individual cells appear to taper at the 
apex, they possess numerous fine cytoplasmic 
processes that interdigitate with photoreceptor outer 
segments (Nag, 1994). Basally, the RPE is highly 
infolded, especially in mammals (Braekevelt, 1988), 
whereas in teleosts, this region is reported to be 
relatively smooth (Collin et al., 1996). The choroidal 
circulation is responsible for supplying nutrients to the 
outer retina, especially to the RPE and photoreceptors, 
whereas the retinal circulation provides with nutrition 
to the inner retinal layers (Delaey & Van de Voorde, 
2000). 

Vision starts when photons are consumed by 
photoreceptors in the retina. Rods intercede scotopic 
vision and mostly have long, barrel - shaped external 
portions. Cones intervene photopic, high keenness 
vision, and often have shorter, more cone - shaped 
external segments. They can exist as single cells or 
into coupled gatherings as copies or even triples 
(Sandstrom, 1999). 

In water, the accessible range of light changes 
with depth. wavelengths either short or long are all the 
high emphatically absorbed, and short wavelengths are 
extra firmly dispersed than the center of the range, 
thus the light at bottom is ranged from blue or from 
blue to green (475 nm) (Jerlov, 1976). UV photons 
remain found at depth in any case, and in non-turbid 
water they may be useful for visualization to a many 
hundred meters (Frank & Widder, 1996). Most diurnal 
fishes are known to have UV impermeable lenses and 
a few animal categories likewise have corneas which 
retain UV radiation (Orlov & Gamburtzeva, 1976 and 
Douglas et al., 1989). The concentration of pigments 
in particular of these UV absorbing visual media is 
high to the point that the lenses or corneas seem 
yellow in color (Muntz, 1973). 

In a previous published work, a histological 
observation of the retina of five different marine fishes 
including the present selected species were carried out 
(Darwish, et al., 2015). There were marked variations 
of the retinal thickness among the species. The retinal 
pigmented epithelium and outer nuclear cells become 
more thickened in Solea solea, less dense in Gobius 
niger as well as finely distributed in Hippocampus 
hippocampus. Hyperpigmentation facilitates digestion 
of apical tips of the outer segment photophores which 
are rich in lipid materials. The presence of mixed rods 
and cones in the photophores of G. niger compared to 
single, double and trible rods in H. hippocampus and 

S. solea which facilitated adaptation of vision in their 
living habitats. Furthermore, our published study 
included the protein analysis of the retina and 
exhibited marked variation in expressed protein bands. 
Also, it revealed a variable expressions of their retinal 
isoenzyme pattern among the studied teleosts fishes. 

Therefore, the objective of the current study is to 
find out more information of vision process and 
illustrate the ultrastructural variations in order to 
understand the functional anatomy of the retina and its 
relation with the different depths. 
 
2. Materials and Methods 

The collected samples of teleost fishes were 
obtained from Mediterranean Sea regions nearby Port 
Said in the Northeast of Egypt. The caught fishes were 
of relatively comparable sizes. The inspected fishes 
are: 

1. Hippocampus hippocampus (Linnaeus, 
1758), belonging to order Syngnathiformes and 
Family Syngnathidae. It`s habitat at 14 - 40 m depth 
(Kim & Park, 2016). 

2. Gobius niger (Linnaeus, 1758), belonging to 
order Perciformes and Family Gobiidae. It`s habitat at 
1 - 75 m depth (Braekevelt et al., 1998). 

3. Solea solea (Linnaeus, 1758), belonging to 
order: Pleuronectiformes and Family: Soleidae. It`s 
habitat at 0 -150 m depth (Raymond & Hitchcock, 
1997). 

They were conveyed to the research center in 
holders loaded with sea water and raised in aquaria 
loaded with a similar water untill the time of 
dissection. Eyes of the selected fishes were 
immediately enucleated. The retinas were readily 
dissected out by aid of a dissecting magnifying lens. 
For ultrastructural investigation, retina were cut into 
little portions, settled in 2.5% gluteraldehyde in 0.1M 
sodium cacodylate cradle at pH 7.3, post fixed in 1% 
OsO4 in a similar buffer, in acetone they dehydrated 
and dipped in Spurr's resin. The samples were cut into 
thin sections by Ultratome, The uranylacetate and lead 
citrate were used as a staining for these sections to be 
examined at JOEL 100CXI Transmission electron 
microscope (musashino3-chome Akishima Tokyo 
196- 8558, Japan). 

 
3. Results 

Following examining the ultrastructural 
components of the retina in Hippocampus 
hippocampus, Gobius niger, and Solea solea. we 
found varying structural components. In the examined 
teleost fishes, Retinal pigment epithelium (RPE) 
comprises of a solitary layer of firmly pressed, 
polygonal, and low columnar epithelial cells. These 
epithelial cells characterize by extensive, vesicular 
nucleui, both smooth endoplasmic reticulum and 
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mitochondria are well advanced. RPE lies between the 
photoreceptors and the choroid with characteristic 
blood capillaries forming the blood-retinal barrier. 
There are a contact between the basal surface of the 
RPE and a basement membrane called Bruch's film 
and the chorio capillaries, a layer of fenestrated blood 
capillaries. RPE cells display melanin pigments 
contained inside the cytoplasm in membrane - 
wrapped granules called melanosomes. The apical 
surface of the RPE forms several long appendages, 
which reach up between the external portions of the 

photoreceptors and mostly wrap them. Several 
phagosomes which are found in the cytoplasm of these 
cells engulf the detached parts of the external 
fragments. Phagosomes are more abundant in Solea 
solea and Gobius niger. There are two sorts of 
pigment granules in these cells, particularly those parts 
that reach out between the external parts of the visual 
cells. These two types are round and ellipsoid-
spherical-shaped structure. In between the 
phagosomes, there is a digested outer segment of 
photoreceptors (Fig. 2, A and Fig. 3 A-C).  

 

 
Fig. 1. Transmission electron micrographs of retina of Hippocampus hippocampus showing: A. Retinal pigmented 
epithelium with underlying choriocapillaries. B. Double rod with inner and outer segment. C. Outer and inner 
nuclear layers separated by outer plexiform layer. D. inner plexiform layer underneath the nerve fiber layer 
containing ganglion cells. Lead citrate and Uranyl acetate. Abbreviations: CC: choriocapillaries; E: erythrocytes; 
PE: pigment layer; OS: outer segment; IS: inner segment, ONL: outer nuclear layer, OPL: outer plexiform layer, 
INL: inner nuclear layer, IPL: inner plexiform layer, GC: ganglion cell, INL: inner limiting membrane. 
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Fig. 2. Transmission electron micrographs of retina of Gobius 
niger showing: A. Pigmented epithelium with densely grouping 
oval and ellipsoid melanosomes surrounding digested outer 
segment photoreceptors and numerous phagosomes appear 
widespread in between photoreceptors. B. Outer and inner nuclear 
layers separated by differentiated outer plexiform layer. C. Inner 
nuclear layer and inner plexiform layer underneath the nerve fiber 
layer containing ganglion cells. Lead citrate and Uranyl acetate. 
Abbreviations: OS: outer segment; IS: inner segment, ONL: outer 
nuclear layer, INL: inner nuclear layer, IPL: inner plexiform 
layer. 

 
Fig.3. Transmission electron micrographs of retina of Solea solea 
showing: A. Pigmented epithelium with underlying choriocapillaries 
with abundant melanin pigments. B. Retinal pigmented epithelium 
with abundant lysosomes and phagosomes surrounding digested 
outer segment photoreceptors. C. Retinal pigmented epithelium with 
numerous melanin pigments, lysosomes and melanosomes. Lead 
citrate and Uranyl acetate. Abbreviations: CC: choriocapillaries; PS; 
phagosomes, MP: melanin pigments, DOS: digested outer segment 
and LY: lysosomes. 
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In Hippocampus hippocampus, a characteristic 

retinal photoreceptors formed mainly of single and 
double rods conjugated at the inner segment. Outer 
segment is slender with pointed end and formed 
internally of finely arranged stacked membranes 
(Fig.1, B). However in Gobius niger which showed 
duplex type retina containing both cones and rods and 
in Solea solea which formed mainly of double and 
triple rods, but not investigated by electron 
microscopic investigations. Their outer segments were 
distributed in between RPE microvilli and formed 
mainly of tubular branches with lamellated inner 
compartment (Fig.2, A and Fig.3 A-C). 

In Gobius niger, the outer plexus layer which lies 
between the outer and inner nuclear cells is thinner 
and less differentiated than its counterpart in 
Hippocampus hippocampus (Fig.1, C and Fig. 2, B, 
C). 

Sparse distribution of outer nuclear cells was 
observed in Hippocampus hippocampus comparing 
with densely grouping outer nuclear cells (Fig.1, C). 
Similar pattern of distribution of inner nuclear and 
ganglion cells was detected in the studied teleost 
specimens (Fig.1, C, D, and Fig.2, B, C). 
 
4. Discussion 

Various visual needs of teleost species may 
emerge from a diversity in the light conditions, 
feeding manners, and all levels of competitions. The 
attributes of lighting, light passage through the 
medium, and reflectance of items may change 
according to environments. Teleost fishes eyes 
develop all through its life time without affecting its 
visual performance. This happens due to a group of 
new acclimatization in the development and growth of 
the eye. Stretching the existing retina and the 
generation of new tissue at the germinal retinal zone at 
the margin of the eye are responsible for the expansion 
of retinal area (Fernald, 1990). The RPE showed 
characteristic digiti form processes between 
photoreceptor cells. It appeared bounded with dark-
brown melanosomes, becoming additional 
concentrated in Solea solea and Gobius niger 
matching with Hippocampus hippocampus. In 
Hippocampus hippocampus and Solea solea indicated 
that the photoreceptor layer consisted mostly of single, 
double and triple rods. The nuclei of the 
photoreceptors of the outer nuclear layer appeared 
more dense in Solea solea, less dense in Gobius niger, 
as well as finely distributed in Hippocampus 
hippocampus. The nerve fibers and ganglion 
demonstrated consistent arrangement of ganglion 
cells, becoming high copious in Solea solea species. 

Unlike Solea solea which are teleost fishes 
favouring the existing at deeper levels of sea water, 

Hippocampus hippocampus is distinguished in 
coastal ponds with strong oceanic effects (Darwish et 
al., 2015 and Foster & Vincent, 2004), other forms 
found on soft bottoms amongst rocks and algae 
(Dawson, 1986). Besides, Hippocampus 
hippocampus is a nocturnal fish. All of these criteria 
supported the presence of rod photorceptors of it 
resemble the other deep living teleosts Solea solea. 
Several researchers found that Hippocampus species 
nourish mainly during period (Hoang et al., 1998). 

The diurnal changes in lighting conditions are 
what triggers photoreceptors and retinal pigment 
epithelium (RPE) of teleost to display major models of 
cell motility (known retinomotor developments). 
When it is dark, the pigment granules of the RPE 
relocate to the scleral base of the RPE cell and cone 
photoreceptors lengthen. In contrast, these 
mobilization are inverted in the light; pigment 
granules scatter into the long apical projections of 
cones contract and the RPE cell (Burnside & Basingert 
1983). 

The obvious rise in the thickness of RPE of 
Solea solea in addition to the occurrence of their 
densely clusters of melanosomes prevalent among 
lysosomes. Copiousness scattering of melanosomes 
assisted absorption of the apical tips of the outer 
segment photoreceptors which are rich in lipid 
materials. In some deep fishes, some investigators 
reported an increase in the retinal pigmented 
epithelium (Munk,1965) and Moray eels (Wang et al., 
2011). The benefits from presence of 
hyperpigmentation in the eye was to minimizing light 
scattering, enhancing absorption of stray light, and 
scavenging free radicals and toxic substances (Futter 
et al., 2004). The identifying lysosomes trough RPE 
which may hold quite a number of about Forty 
hydrolytic enzymes that have been recognized by a 
different set of histochemical and biochemical 
methods (Boulton et al., 1990). 

The special connection between the 
photoreceptors and the RPE reaches out to the unusual 
composition of the POS layers. POS mass contains 
polyunsaturated lipids that are decreased by RPE 
phospholipases (Zimmerman et al., 1983) and acid 
lipases (Hayasaka et al., 1977) discharging fatty acids 
which subsequently reused by photoreceptors for 
expenditure in POS regeneration (Gordon & Bazan 
1993). 

The RPE induced active detaching of the tips of 
the light-sensitive photoreceptor, phagocytosis and 
external segments, in addition to its retinomotor 
mobility of pigment-epithelium in co-ordination with 
cones and rods (Kunz & Ennis,1983). 

The observed findings revealed dense 
accumulation of melanosomes within the retinal 
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pigmented epithelium which redistributed from the 
body of cell into its apical processes. The 
melanosomes appeared either spherical or ellipsoid 
structure. Elliptical melanosomes were placed 
equivalent to the oval or spherical melanosomes were 
organized obliquely or vertically to the apical 
processes. Melanosomes are lysosome-related 
organelles (Raposo & Marks 2007). 

In amphibians and fish, the melanosomes of the 
RPE display a sensational reorganization from the cell 
body into the apical projections upon the beginning of 
light, which is opposite in the dark. On the other side, 
Melanosomes present in the RPE of mammals are 
expected not to change with the light cycle (Burnside 
& Laties, 1979). Melanosomes was establish to hold 
high combination of acid phosphatase (Nakagawa et 
al., 1984). 

Investigation of both nocturnal and diurnal forms 
from amongst 15 species of cardinal fish 
(Apogonidae), showed that the nighttime species 
carried bigger retina and eye associated with diurnal 
fishes. The daylight fishes have cones which frame a 
mosaic including 4 paired with one single in the 
middle, a model that is less noticeable at the borders of 
the retina and all the more so in (Fishelson et al., 
2004). The round shape excludes all deviated and 
slanted abnormalities. Retinal curviture makes it 
needless to splayed the pictures and neural mechanism 
can rectify for picture deformations without loss of 
data (Kroger, 2013). 

The current obtained results pointed to apparent 
fluctuating retinal structure in the deliberate teleost 
species according to the marine habitat depths. 
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