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Abstract: In the multiple linear regression analysis, the ridge regression estimator is often used to address multicollinearity. Besides multicollinearity, outliers are also a problem in the multiple linear regression analysis. We propose new biased estimators robust ridge regression called the ridge least median squares (RLMS) estimator in the presence of both outliers and multicollinearity. For this purpose, a simulation study is conducted in order to see the difference between the proposed method and the existing methods in terms of their effectiveness; the mean square error. In our simulations, the performance of the proposed method RLMS is examined for different number of observations, and the different percentage of outliers. The results of different illustrative cases are presented. This paper also provides the results of the RLMS on a real-life data set. The results show that RLMS is better than the existing methods. (OLS, RLAV and Ridge Regression) in the presence of multicollinearity and outliers.
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1. Introduction
It is well known that the classical least squares (LS) estimation has many desirable statistical properties, particularly when errors are normally distributed. The variance of LS estimations are the smallest among all sorts of unbiased estimator class. Nevertheless, LS estimators frequently are influenced by two types of problem, outliers and multicollinearity which in turn lead to highly unstable LS estimates.
To overcome the influence of multicollinearity, many biased estimators were introduced to handle the mlticollinearity problem in regression model. (Hoerl and Kennard, 1970 a, b), first proposed a useful tool called ridge regression for improving prediction in regression situations with highly correlated regressors variables. This method has been successfully applied to many fields. However, the ridge regression method is not robust, it is sensitive to observations that is considered as contaminated data usually called outliers.
The robust ridge regression estimation has been investigated, to remedy the effect of multicollinearity and outliers. The parameter estimation is more difficult when both problems are present in the data set. Different robust estimation methods have been used in the literature to estimate the parameter of regression model in the presence of outliers and multicollinearity. (Pariente, 1977; Askin and Montgomery, 1980; Pfaffenberger and Dielman,  1984; Pfaffenberger, 1985 and Nikolai Krivulin, 1992), among others  presented several new ideas concerning the LMS estimator so as to provide some theoretical framework for efficient regression algorithms. (Desire and Leonard, 1986) introduced a procedure to determine the minimum redundancy of a measurement set and the non-redundant samples of measurement that is robust against outliers and multicollinearity.
This paper propose a new estimation method of a robust ridge estimator that has a high breakdown point called the robust ridge regression estimation method based on least median squares (RLMS). The least median squares estimator has 50% breakdown point and was proposed by  (Rousseeuw, 1984, 1985), who replaced the least sum of squares (LS) that has 0% breakdown point with the least median of squares LMS. (Hampel, 1975), explains the breakdown point as the smallest percentage of contaminated data that can cause the estimator to take a random large abnormal value. 
The aim of evaluating these alternatives biased robust methods is to find the estimator of the parameters of the model that is highly efficient and effective in the presence of outliers and multicollinearity. The performance of the robust ridge estimators is examined by using the standard errors (SE) on a hald data set. The remainder of the paper is organized as follows. After a brief review of ridge regression in Section 2, we define a robust regression and ridge robust estimators in Section 3. Numerical example is given in section 4, and simulation is presented in Section 5, in order to compare between the proposed and the existing methods. It will illustrate that the new estimation method is better than the existing methods when multicollinearity and outliers occur simultaneously. Finally, in section 6 conclusions are presented.

2. Material and Methods 
2.1.  Ridge Regression 
When the least-squares method is applied to non-orthogonal data, we obtained weak estimates of the regression coefficients (Hoerl and Kennard, 1976). 
The assumptions of the least squares method that is  an unbiased estimator of .
The Gauss-Markov property assures that the least-squares estimator has a minimum variance in the class of unbiased linear estimators in the presence of multicollinearity (Marquardt and Snee, 1975).
One way to reduce this problem is to descend the requirement that the estimator of  be unbiased. Assume that a biased estimator of  is found to say  that has smaller variance than the unbiased estimator . The mean square error of  is defined as
         (1)
Assuming a small amount of bias in , the variance of can be made small such that
the MSE of is less than the variance of the unbiased estimator .
A number of procedures have been improved in obtaining biased estimates of regression coefficients. One of these procedures is ridge regression, primarily proposed by (Hoerl and Kennard, 1970). More specifically, this estimator is defined as the solution to   where  is a constant selected by the analyst. The constantis usually refers to the biasing parameter, it is obvious that ifthen the ridge estimator is the least squares estimator. Hence, on the other hand, when the bias increases. However, the variance decreases as increases.
In this ridge regression, we would like to select a value ofsuch that the decrease in the variance term is greater than the increase in the squared bias. If this can be done, the mean square error of the ridge estimator will be less than the variance of the least square estimator . (Hoerl and Kennard, 1976), proved that there exists a non- zero value offor which the mean squares error (MSE) is less than the variance of the least squares estimator. We can select a reasonably small value ofat which the ridge estimates are steady. Mostly, this will produce a set of estimates with smaller MSE than the least-squares estimates. (Hoerl and Kennard, 1976), have suggested that an appropriate choice of is where  and   are found by the least squares solution.
[bookmark: OLE_LINK89][bookmark: OLE_LINK90][bookmark: OLE_LINK91][bookmark: OLE_LINK92]2.2. Robust Regression Estimators
Robust regression analysis available is an alternative to a least squares regression model when essential assumptions are unaccomplished by the nature of the data. When the researchers estimate a regression model and test their assumptions, it is always observed that the assumptions are dramatically violated. Sometimes, the analyst can transform the variables to conform to those assumptions. But often, a transformation will not reduce the leverage of effective outliers that bias of the prediction. Under these situations, robust regression that is resistant to the influence of outliers may be the only reasonable recourse.
There are several different classifications of robust estimates that exist to handle these violations. One important estimator is called the least median squares estimator (Rousseeuw and Leroy, 1987), which has the advantage of minimizing the influence of the residuals. According to (Venables and Ripley, 1999), this algorithm minimizes the median of ordered squares of residuals in order to get the regression coefficientsand can be written as equation 2.
Least Median of Squares = Min median
            (2)
[bookmark: OLE_LINK93][bookmark: OLE_LINK94](Martin, 2002) describes the median squared residuals lack a smooth squared residual function and the asymptotic rate is to convergence efficiently under normality. Also, it takes a long time to converge. Least median of squares (LMS) estimator is one of the true high breakdown point estimators that reached the above mentioned upper boundary of the breakdown point. (Rousseeuw, 1984).
[bookmark: OLE_LINK95][bookmark: OLE_LINK96]2.2.1. Robust Ridge Regression Estimators (RRR)	(Pfaffenberger and Dielman 1985, 1990), proposed robust ridge regression by extending the development of their technique by performing Monte Carlo simulation studies to compare various approaches. The proposed method in this paper combines the LMS estimator with the ridge regression estimator which is referred to as the RLMS estimator. So, RLMS robust ridge estimators will be resistant to multicollinearity problems and less affected by outliers. The RLMS estimator can be written as equation 3.
   (3)
The value ofis determined from data using equation 4.
 and    (4)
where p is the number of independent variables, n is the number of observations in the data,  is the estimates of and  is the residuals from LMS method.

3. Results 
3.1. Numerical Result
A real data set from (Hald, 1952), is considered to assess the effectiveness of the proposed robust ridge regression method. This data set consists of 4 variables and 13 observations with 3 outliers. The response variable (y) is the heat evolved for a particular mixture of cement, and the covariates are tricalcium aluminate (x1), tricalcium silicate (x2), tetracalcium alumina ferrite (x3), and dicalcium silicate (x4). 
Table 1 contains the parameter estimates, the standard error of the parameters estimates and VIF analysis of the Hald Data. The VIF for each of these predictors are all extremely high, indicating troublesome multicollinearity with the presence of outliers in the data, the use of robust method provides more stable parameter estimates. 
With this aim, initial robust regression estimates was first calculated to obtain robust ridge estimates in the presence of both multicollinearity and outliers; these estimates are given in Table 1.
The standard error of the proposed RLMS method is lower than the existing RLAV in the presence of outliers. Table 1 shows that this data have a high VIF for all variables with three outliers. 
Also, the standard errors of the parameter estimates for RLMS are less than all. But the mentioned existing methods except for the ridge regression the difference is small.
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Table 1. Estimated parameter and SE of  ,  , and  for the different methods with the variance inflation factor.
	Coef.
	Estimate
	VIF
	LS
	RIDGE
	RLMS
	RLAV

	
	parameter
s.e.
	38.4962
	1.5511
0.7448
	0.5081
0.0791
	0.3964
0.1036
	0.6466
0.1325

	
	
	
	
	
	
	

	
	parameter
s.e.
	254.423
	0.5102
0.7238
	0.3102
0.0916
	0.3545
0.1070
	0.6082
0.2726

	
	
	
	
	
	
	

	
	parameter
s.e.
	46.8684
	0.1019
0.7547
	-0.0605
0.0777
	-0.0480
0.1012
	0.1253
0.1392

	
	
	
	
	
	
	

	
	parameter
s.e.
	282.513
	-0.1441
0.7091
	-0.3879
0.0925
	-0.3548
0.1064
	-0.0859
0.2856
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3.2. Simulation Study
We carry out a simulation study to compare the performance of the different methods LS, RR and RLAV with the proposed estimator RLMS. The simulation is designed to allow both multicollinearity and non-normality to exist simultaneously. The non-normal distributions are used to generate outliers.
Suppose, we have the following linear regression model  20. (Siti Meriam et al., 2012)
  
where i=1, 2, 3               (5)  
The parameter values , ,  and  are set equal to one. The explanatory variables  , and  are generated using equation (6)
   i=1, 2,…, n, j =1, 2, 3  (6) 
where, are independent standard normal random numbers generated by the normal distribution.
The explanatory variable values were generated for a given sample size n. The sample sizes used were 50 and 100. The value of  representing the correlation between any two explanatory variables, and its values were chosen as: 0.0, 0.5 and 0.99. The percentage of outliers present in this data set is 20%.
The number of replications used is 500. The statistics computed are the bias, root of mean squared error (RMSE), standard error (SE), and 6 pairwise MSE ratios of the estimators. 
The bias and MSE are given as:  where , and the mean squared error () is , therefore, the RMSE  is given by   
 where j= 0, 1, 2, 3 
The VIF for the simulated data are shown in Table 2.

Table 2. The VIF for the simulated data
	= 0.99

	Var
	X1
	X2
	X3

	VIF (N=50)
	126.1541
	204.3971
	112.0508

	VIF (N=100)
	133.8203
	238.6387
	141.2589


Here the maximum VIF is 238.6387 when the correlation between independent variables was very high with different sample size. So it is clear that the multicollinearity problem exists. 
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Table 3 Bias, RMSE and SE of , and with error normal (0,1)  distribution of the sample size n=50 correlation 0.0, 0.5, 0.99  outliers  0% and 20%
	  0% outliers

	Value of

	Coef.
	Parameter
	LS
	RIDGE
	RLAV
	RLMS

	
	
	Bias
	-0.0015
	-0.4994
	-0.5016
	-0.4929

	
	
	RMSE
	0.1491
	0.5064
	0.5084
	0.4998

	
	
	S.e
	0.1491
	0.0835
	0.0831
	0.0831

	0.0
	
	Bias
	-0.0046
	-0.5018
	-0.5039
	-0.5032

	
	
	RMSE
	0.1467
	0.5092
	0.5112
	0.5098

	
	
	S.e
	0.1466
	0.0866
	0.0863
	0.0814

	
	
	Bias
	0.0008
	-0.5008
	-0.5029
	-0.5023

	
	
	RMSE
	0.1537
	0.5071
	0.5091
	0.5084

	
	
	S.e
	0.1537
	0.0795
	0.0791
	0.0786

	  20% outiers

	
	Coef.
	Parameter
	LS
	RIDGE
	RLAV
	RLMS

	
	
	Bias
	1.7531
	-0.9020
	-0.9701
	-0.9696

	
	
	RMSE
	51.923
	1.7526
	0.9862
	0.9796

	
	
	S.e
	51.893
	1.5027
	0.1774
	0.1401

	0.5
	
	Bias
	-1.4783
	-1.0238
	-0.9686
	-0.9704

	
	
	RMSE
	67.532
	2.2031
	0.9772
	0.9761

	
	
	S.e
	67.515
	1.9507
	0.1293
	0.1057

	
	
	Bias
	-0.2814
	-0.9854
	-0.9757
	-0.9694

	
	
	RMSE
	48.457
	1.7307
	0.9896
	0.9793

	
	
	S.e
	48.456
	1.4227
	0.1655
	0.1388

	 20% outiers

	
	Coef.
	Parameter
	LS
	RIDGE
	RLAV
	RLMS

	
	
	Bias
	2.1057
	-0.9066
	-0.9751
	-0.9744

	
	
	RMSE
	62.365
	1.7566
	0.9907
	0.9842

	
	
	S.e
	62.330
	1.5046
	0.1755
	0.1383

	
	
	Bias
	-1.7756
	-1.0289
	-0.9733
	-0.9745

	0.99
	
	RMSE
	81.113
	2.2077
	0.9817
	0.9800

	
	
	S.e
	81.094
	1.9533
	0.1281
	0.1045

	
	
	Bias
	-0.3379
	-0.9904
	-0.9804
	-0.9741

	
	
	RMSE
	58.203
	1.7349
	0.9940
	0.9837

	
	
	S.e
	58.202
	1.4245
	0.1638
	0.1370






Table 4 Bias, RMSE and SE of , and  with error normal (0,1) distribution of the sample size n=100 correlation 0.0, 0.5, 0.99  outliers 0% and 20%
	 0% outliers

	Value of



	Coef.
	Parameter
	LS
	RIDGE
	RLAV
	RLMS

	
	
	Bias
	0.0055
	-0.4987
	-0.4991
	-0.4984

	
	

	RMSE
	0.1032
	0.5018
	0.5022
	0.5015

	
	
	S.e
	0.1031
	0.0562
	0.0561
	0.0557

	0.0
	
	Bias
	0.0146
	-0.496
	-0.4964
	-0.4951

	
	

	RMSE
	0.1078
	0.4991
	0.4995
	0.4982

	
	
	S.e
	0.1068
	0.0557
	0.0556
	0.0551

	
	
	Bias
	-0.0040
	-0.5003
	-0.5007
	-0.4953

	
	

	RMSE
	0.1023
	0.5039
	0.5043
	0.4988

	
	
	S.e
	0.1022
	0.0604
	0.0603
	0.0596

	 20% outiers

	
	Coef.
	Parameter
	LS
	RIDGE
	RLAV
	RLMS

	
	
	Bias
	-1.5448
	-1.0143
	-0.9750
	-0.9695

	
	

	RMSE
	33.827
	1.4107
	0.9969
	0.9856

	
	
	S.e
	33.7918
	0.9806
	0.2077
	0.1774

	0.5
	
	Bias
	3.2966
	-0.8810
	-0.9654
	-0.9651

	
	

	RMSE
	48.607
	1.6624
	0.9812
	0.9776

	
	
	S.e
	48.495
	1.4098
	0.1752
	0.1559

	
	
	Bias
	-1.8926
	-1.0194
	-0.9753
	-0.9683

	
	

	RMSE
	32.248
	1.3915
	0.9941
	0.9851

	
	
	S.e
	32.193
	0.9472
	0.1923
	0.1810

	 20% outiers

	
	Coef.
	Parameter
	LS
	RIDGE
	RLAV
	RLMS

	
	
	Bias
	-1.8554
	-1.0192
	-0.9798
	-0.9743

	
	

	RMSE
	40.630
	1.4151
	1.0008
	0.9895

	
	
	S.e
	40.588
	0.9816
	0.2041
	0.1725

	0.99
	

	Bias
	3.9596
	-0.8858
	-0.9706
	-0.9703

	
	
	RMSE
	58.383
	1.6661
	0.9857
	0.9822

	
	
	S.e
	58.2486
	1.4112
	0.1719
	0.1522

	
	

	Bias
	-2.2732
	-1.024
	-0.9800
	-0.9820

	
	
	RMSE
	38.734
	1.3959
	0.9980
	0.9977

	
	
	S.e
	38.667
	0.9482
	0.1886
	0.1759






Table 5 MSE ratios of 6 pairwise estimators of ,, with errors normal (0,1)  distribution and 0% and 20% of outliers.
	                                                             

	Estimator 1 vs Estimator 2 vs Estimator 3 
	 Values of 

	  


RLMS





RLAV



RIDGE
	
	0.0
	0.5
	0.99
	0.0
	0.5
	0.99
	0.0
	0.5
	0.99

	
	LS
	11.24
	0.00
	0.00
	12.08
	0.00
	0.00
	10.94
	0.00
	0.00

	
	
	23.59
	0.00
	0.00
	21.37
	0.00
	0.00
	23.77
	0.00
	0.00

	
	RIDGE
	0.97
	0.31
	0.31
	1.00
	0.20
	0.20
	1.01
	0.32
	0.32

	
	
	1.00
	0.49
	0.49
	1.00
	0.35
	0.35
	0.98
	0.50
	0.51

	
	RLAV
	0.97
	0.99
	0.99
	0.99
	1.00
	1.00
	1.00
	0.98
	0.98

	
	
	1.00
	0.98
	0.98
	0.99
	0.99
	0.99
	0.98
	0.98
	1.00

	
	
	
	
	
	
	
	
	
	
	

	
	LS
	11.63
	0.00
	0.00
	12.15
	0.00
	0.00
	10.97
	0.00
	0.00

	
	
	23.66
	0.00
	0.00
	21.48
	0.00
	0.00
	24.30
	0.00
	0.00

	
	RIDGE
	1.01
	0.32
	0.32
	1.01
	0.20
	0.20
	1.01
	0.33
	0.33

	
	
	1.00
	0.50
	0.50
	1.00
	0.35
	0.35
	1.02
	0.51
	0.51

	
	
	
	
	
	
	
	
	
	
	

	
	LS
	11.53
	0.00
	0.00
	12.05
	0.00
	0.00
	10.89
	0.00
	0.00

	
	
	23.62
	0.00
	0.00
	21.45
	0.00
	0.00
	24.26
	0.00
	0.00
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The measure of convergence was computed as the number of times estimator 2 or 3 to the true parameter while the value in Tables 3 and Table 4 show the summary statistics such as bias, root of mean squared error (RMSE) and standard error (SE) of the estimators of the normal distributions for sample size 50 and 100 with 0% and 20% of outliers and different value of .  
On the other hand, when we apply these methods to the simulated data with different sample size in the presence of different percentage of outliers and different levels of multicollineaity, we obtained that the standard errors for proposed method are less than the standard errors of the mentioned existing methods.
Table 5 shows the efficiency of the estimators by looking at the MSE ratios of the estimators written as follows.
   (7)
less than 1 denote that the estimator is more efficient, however, values more than 1 denote that the other estimator is more efficient. 
From Tables 3 and Table 4 we can see that the RMSE of the LS is relatively smaller than the other estimators when the errors are normally distributed that is, without outliers and no multicollinearity. 
As expected, the LS gives the best result in the ideal situation. Also, the result in Table 5 is in favor of LS. However, we see in Table 5 that the of RLMS to LS is greater than 1.00 denoting that the LS is more efficient than the RLMS when no outliers and no multicolliearity. 	
On the other hand, we can see from  the Tables 3 and Table 4 that the RMSE of the RIDGE is relatively smaller than the RLAV. Also, the MSE ratios of the estimators the values of ridge less than 1 indicates that the estimator is less efficient than RLAV and RLMS when the errors are normally distributed without outliers and no multicollinearity.
While, for non-normal error distribution and when correlation and outliers are present in the data, RLMS is better than the LS, RIDGE and RLAV. RLAV its almost as good as RIDGE and LS.
The MSE in Table 5 supported the result obtained from Tables 3 and Table 4. These ratios show the efficiency of RLMS relative to other estimators. Values less than one indicate that RLTS is more efficient, however, values greater than one denote that the other estimators are more efficient than
RLMS. 
Consequently, we can see that the RMSE of the RLMS is relatively smaller than the other estimators when the errors are normally distributed in the presence of outliers and multicollinearity. It obviously shows that RLMS is more efficient than RLAV and RIDGE but certainly much more efficient than LS when in the presence of outliers and multicollinearity.
The simulation results for larger samples, that is for n=100 are consistent with the results of the smaller sized samples. The results also denoted that the estimator for larger samples are more efficient than those of smaller samples since the values of RMSE are smaller.

4. Discussions 
Multicollinearity data sets with outliers are very common in real life endeavors. In order to remedy both problems, robust biased estimation methods are applied. The best model is chosen by looking at the RMSE value.
The simulation study in section 5 provide RMSE values, bias and standard errors of the LS, ridge, RLAV and RLMS estimators. It can be observed that the RMSE obtained from RLMS is the minimum. Thus, RLMS is the best method. When there is no outliers and multicollnearity, ridge regression has the least RMSE value, thus the best method. But when there is multicollinearity and outliers in the data, then RLMS has the least RMSE value, thus it is considered the best method.  
We also use a the real-life data set to study the effect of multicollinearity and outliers. The results obtained from our proposed method of RLMS are better than the OLS, Ridge and RLAV in terms of their RMSE values. Consequently, in this study, it is shown that results obtained from the numerical data set and simulation study with both multicollinearity and outliers, RLMS gives better results followed by RLAV method. This result is true for =0.0, 0.5 and 0.99 with the sample size of n=50 and 100.
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