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1. Introduction
If  be a complex Banach space with dual space  and   Let  be the Lebesgue–Bochner space  of valued pth power integrable functions on the unit circle  with respect to normalized Lebesgue measure  on . The space in the title of this paper is the vector–valued Hardy space.  where  denotes the th Fourier coefficient of . As one might expect,  can also be realized, via Poisson integral, as a closed subspace of the Hardy space 
 
( denotes the unit disc). ( These spaces "coincide" iff  has the "analytic Radon–Nikodým property" a RNP, see 2.7). The analogous spaces of -valued antianalytic (resp. harmonic) functions are denoted by   See Section 2 for details.
It is classical that in the scalar theory  the dulality  holds; more precisely: the canonical map 
is an isomorphism [17,7.2]. The crucial ingredient in the proof is the boundedness of the "analytic (or Riesz) projection"  which assigns to the  function  the  function  Thus, if  is a Banach space such that the analogous map  is defined and bounded, the isomorphism  holds, and the converse is also true (4.5). This was observed first by Bukhvalov [8] and rediscovered in [33]. Unfortunately, the class of Banach spaces admitting this analytic projection is very restrictive: It coincides with the well-known class UMD which is, e.g., smaller than the class of superreflexive Bacach space (see 3.3). The question thus arises how to describe  for a general Banach space . In this paper,  is represented as a certain space  of analytic -valued functions on the disc (4.3, 4.4); this space contains  as a weak* sequentially dense subspace. In general  is in  neither dense nor closed (4.7): e.g., sufficient for denseness is the Radon-Nikodym property of ; in present of a RNP it is also necessary. 
The connection of this description of  with the analytic projection is still very close:  consist exactly of the antianalytic projections of functions in  (Corollary 4.5). (Note that for any harmonic function  the analytic projection  can always be defined, see 3.1). It must be said, however, that the norm  of a member  depends so explicitly on its action as a functional on  that the representation theorem can not be regarded as really satisfactory. My justification is, first that the function is ─which, anyhow, are the functional on ─can enjoy a rather unwieldy boundary behavior. Even if  has the RNP (in which case  is the limit in norm of the,  see 4.7). Cf. the discussion in 4.8. This is exemplified by the examples living in ,  (predual of JT [46]), . These constructions might be of interest for other vector- valued Hardy space or harmonic analysis as well. Second, the result of Bukhavlov mentioned above subordinates itself naturally under the representation given here (4.5) and, anyway, some assertions about the position of  in  can be made (4.6, 4.7). 
I am not treating the case , since this has been done, for several variants of vector-valued  spaces, by Blasco [3] and Bourgain [5]. 
The organization of this paper is as follows. In Section 2, we collect preliminaries on vector-valued Hardy spaces. In section 3, the analytic projection operators are introduced, and first example is given of bad behavior of this operation outside the UMD class (3.5). The representation of  described informally above is carried out in Section 4, consider  under the canonical map when  admits analytic projections . Last but not least, the construction of (counter-) examples fills Section 5.

2. Preliminaries on vector-valued Hardy spaces
We begin by recalling some necessary definitions and notation on spaces of integrable functions.
In this paper,  is the unit disc in  the unit circle,  normalized Lebesgue measure on . All spaces of integrable functions will be taken with respect to , which is therefore suppressed innotation.  is the indicator function of  denote complex Banach spaces,  the duall space of  (resp. ) the closed (resp. open) unit ball of . The term “isometry” does not include surjectivity, whereas "isomorphism" does. If  is an -valued and  an -valued function, stands for the scalar function has it usual meaning and is abbreviated as  
The basic theory of the Bochner integral and Bochner-Lebesgue spaces  is supposed to be known [15]. We are going to explain the less familiar notion of Gel'fand integral and the spaces  first. Unless stated otherwise, .
Definition 2.1. A function  is called scalarly integrable (w.r.t.) if the function  is integrable for all  in this case, for any Borel set , the Gel'fand integral  is well–defined by the formula 
 [15].
The symbol  will often be suppressed. 
Now recall that the Banach lattice  is order complete [28]; i.e., every order–bounded subset of  has a supremum in  (supremum in the sense of order in , denoted by -sup). Put 

Following Bukhvalo [8], one defines for  the  function  and the semi-norm  The null space of the semi-norm  on  is easily recognized as  (Note that in the formulation "” the exceptional null set depends on . Typical example:  the th unit vector. We have, , but  

Finally, put  with the associated norm  For and  are well-defined, since independent of the choice of representative. Obviously, we have  as a closed subspace (i.e., the canonical map is an isometry.
Now let  It is not hard to see that  is a (well-defined!) member of  satisfying ,
so that  acts as a bounded linear functional of norm at most , on . The importance of the space lies in the fact that it is the exact dual space of  
Theorem 2.2. Let  be a Banch space,  the map

is a (well-defined) isometric isomorphism.
It is in a canonical sense equivalent [21] to the perhaps more widespread representation of  using the upper integral [24].



Lemma 2.3. For , we denote by  the nth Fourier coefficient  and by the Poission integral of . (The integrals, of course, Gel’fand integrals.) Here  is the Poisson kernel,

An easy computation yields, as in the scalar case, 


with absolutely and in  locally uniformly convergent series. 
Now let  be a Banach subspace. The following conditions on  are equivalent [21] :

Borel;




  . 

The space of those  is denoted by  Obviously  as closed subspaces.
An important feature of functions in that is, of the strongly measurable members of is exhibited in the following.


Theorm 2.4. Let  . Then  in  

Proof. Since translation in the argument of a function  is a continuous map  [23] (here the Bochner integrability enters), the scalar proof can be carried over without difficulty [8]. 



Corollary 2.5. Trigonometric polynomials   are dense in  and in .

Proposition 2.6. For  we denote by , 








Cauchy integral of . Here  is the Cauchy kernel, is an analytic valued function with Taylor series ; in particular, if , where is a Banach subspace. Comparing the coefficients of  and  yields: is analytic  Any  with these properties is called "of analytic type " ("analytic" for short). The (obviously closed) subspace of analytic members of   is donted by   of course, 


As a corollary of Theorem 2.4. "analytic" polynomials  are dense in 





Proposition 2.7. We define  harmonic  where  and . A word on the notion of a Banach space valued harmonic function seems in order. Exactly as in the better known case of holomorphic functions [23] any two reasonable definitions of harmonicity for a Banach space valued function are equivalent. To be more specific, any of the following conditions on  implies all the others [21] .
i.   is strongly harmonic, i.e,  and .
ii.  is weakly harmonic, i.e.  is harmonic  
iii. 

(If )  is weak* harmonic, i.e.,  is harmonic 
iv.  such that  in  with absolutey and locally uniformly convergent series.
By the usual sub harmonicity argument it is easily proved that  increases with  for  harmonic,  [21]. Also, one has the scale  if  the inclusions are of norm  
The following Poisson integral representation theorem [21Theorem (1.5)] is essentially a concise formulation of results of Grossetete [18, Sect. l] and Bukhvalov [8, Theorem 2.3]. Let  as in Lemma 2.2. (e.g., 
. 
Theorem 2.8. The Poisson integral defines 


an isometry 



an isometric isomorphism if 

For the sake of clarity, I remark that the isometry in  is never subjective (except  ). The full representation space for  would be , the space of valued vector measures with bounded variation on the Borel sets of  The space  appearing above corresponds via the identification  exactly to the subspace  consisting of 𝜆-absolutely continuous members of , this is essentially the "generalized theorem of Lebesgue Nikodym"[16].

Definition 2.9. Thus  is a closed subspace and  isometrically; for  with norm . 
Function in these spaces behave well as regards boundary values:



Proposition 2.10. If  with  then a.e. Conversely, if and 


exists a.e., then  and  Summing up, 

Proposition 2.11. The analytic vector–valued Hardy spaces  are defined in the range  as 

,




Thus, of course, is analytic}, We also define the vector–valued Nevanlinna class 


Again, the suprema are increasing limits as  and we have the scale .

 if 



the first inclusion is because for analytic (use Jensen's inequality), the other inclusions are clearly of norm . We will make use of the following result due to Danilevich [14] in a more general Frechet space setting. For a simpler proof in the Banach space context [21].




Proposition 2.12. Let  be a separable Banach space and  Then exists a.e in 

Returning to the range the following Poisson integral representation theorem is, at least if ,a trial consequence of the preceding one (2.7), by the remarks made in 2.6. It is due to Ryan [34]. Let again .

Theorem 2.13. For the Poisson (or Cauchy) integral defines an isometric isomorphism . 
In view of Theorem 2.8  and the remarks following it, the theorem for  is tantamount to the knowledge that every “analytic” member of  is already in , i.e., the vector-valued  and . Riesz theorem [18, 2. Corollary; 21, Theorem (2.3); 25, p. 316; 35, Theorem l] which in turn is a trivial consequence of the scalar-valued one. 

Definition 2.14. 
Thus  is closed subspace and for  
 As one might expect, the assertions of Preposition 2.7 hold for  in the full range  that is,  [11]. In most of what follows, we will identify the spaces  and , more precisel y with  and   with its boundary value  .
Proposition 2.15. Bukhualov and Danilevich were the first to recognize the close connection between the Radon-Nikodym property  [15] and the theory of valued  spaces. Their result may be summarized as follows:  has  iff  (for one (all)  various extensions of this theorem, as regards the extreme values of, have been given independently by Blasco [2] and the author [21]. I state here only what is needed later.
Theorem 2.16.  has the RNP iff  (that is, by Proposition 2.7, iff every bounded harmonic function  has radial limits ).
Theorem 2.17. A Banach space  has the analytic Radom-Nikodym property if the following equivalent properties are satisfied: 
(that is by Proposition 2.11., every bounded analytic function  has radial limits a.e.).
 For all  that is by Proposition 2.11, every  has radial limits a.e.).
 Every  has radial limits a.e.
Proof. It obviousty suffices to show . But this follows trivially from the vector–valued . and . If  then  with  without zeroes.
For example,  does not have a : Consider  . It is also clear from the above that RNP implies a RNP. The converse is not true; an example is provided by the space  which has a RNP, as does every Banach lattice not containing  . This major result is again due to Bukhvalov and Danilevich [11], for a simplified proof using semi-embedding).

3. Analytic projection

As in the scalar-valued case, the analytic (or Riesz) projection is intimately connected with the description of duals of Hardy spaces. Let 
Definition 3.1. For a harmonic function  with series  let  be the analytic function   is called the analytic projection of .



Thus, for   for simplicity, this will often be abbreviated to there may or may not be a  with (equivalently, with formal Fourier series  if there is, this (necessarily unique)  is also dented by  and called the analytic projection of  for example, the analytic projection of a trigonometric polynomial is





For technical reasons, the antianalytic projection, denoted by  will also be used: For  as above,  


, etc. (Here  denotes convolution with the complex conjugate of the Cauchy kernel.) It is the "adjoint" of the analytic projection in the sense that, e.g., for trigonometric polynomials 






Definition 3.2. For we say " admits analytic" projection  if  is a bounded operator . Equivalent conditions are is a bounded operator  (or, by denseness, only on the trigonometric polynomials); alternatively: is a bounded operator . One can also show[22] that it is the same to demand that  is a bounded operator , or that  is complemented in . By duality (see Definition 3.1),  admits analytic projection  iff  admits [anti-] analytic projection   [8]. 
Lemma 3.3. That  boundedness of the analytic projection is equivalent to boundedness of the Hilbert transform  where  a.e. .
Superreflexivity of  is derived already from -boundedness of the -valued Hilbert transform on the circle (=conjugate function operator, which is trivially equivalent to the analytic projection, too). In a similar vein, we have.
Proposition 3.4. Suppose  for all . Then a RNP implies RNP for . 
Proof. To derive RNP for , one has to show that every  has radial limits a.e. (Proposition 2.15.) Putting , so that  as well, one easily obtains

.
By assumption, , and if  has a  it follows that  have radial limits a.e. (2.17), whence the same holds for . 

Example 3.5. The proposition says in other words that if then analytic projection cannot map  into . Moreover, the proof tells one how to produce examples: Take any  without a.e. existing boundary values, then necessarily .

As a concrete example, consider  and   is harmonic, e.g., by condition (ii) of 2.7, and  for all , thus .

Since the series expansion of  is , where , we have 
so that





does not depend on  and as  




so that indeed .



Keeping  fixed, we will show now that analytic projection is not a bounded operator in the sense that 





Take  as above and, for  put then  with for all . On the other hand, as is easy to see, Thus, as computed above,

 

hence

This means as asserted. 
As a corollary, analytic projection is not a bounded operator (and thus; by the closed graph theorem, not an operator at all)  for any , or, what amounts to the same, it is not -bounded on the -valued trigonometric polynomials. Note that even for  this does not follow directly from the result about superreflexivity quoted in Lemma 3.3, since the first part of its proof, proceeding along the lines of [31, 23.] works with step functions and thus outside  For further examples of bad behaviour of the analytic projection see Examples 5.2,5.3&5.4.
4. The Dual Space of 
Let  be a complex Banach space and  Recall the identifications 

We Define 


(Obviously, on the disc we have via Poisson integral  

The spaces  are defined analogously, namely as 	(resp. . 
Remark 4.1. By general Banach space theory,  Where  is the annihilator of  In  In 2.1,  was identified as , and  is easily recognized as , since analytic polynomials are dense in . We arrive at the description

(canonically isometrically isomorphic), but of course one aims at a description of  as a space of functions, not equivalence classes.
Consider the canonical injective operators .
which is the composition .



If  is a UMD space, then  is an isomorphism, since  is then given by the antianalytic projection modulo its kernel Vice versa, if  is an isomorphism , it is immediate to verify that 
is the antianalytic projection. We arrive at a theorem of Bukhvalov [8]:  canonically admits analytic projection  admits [anti-] analytic projection  i.e.,  (see 3.2, 3.3).
The scalar multiplication in  is to be understood as [37]. This makes the dual pairing  sesquilinear and allows one to replace  by  in all of these consideration [8]. Alternatively, the latter effect could also be achieved by giving the dual pairing , defined as  here and in [8]  the new meaning  as in [10], similar to the case of Bergman spaces in [9].) 
The problem arises to describe  for a general Banach space  as a space of functions–the more, since the UMD condition on  is extremely restrictive. The description (4.6) of  as , a space of antianalytic - valued functions on the disc, is an attempt in this direction. Since the norm  of  depends rather explicitly on  action as a functional or , this answer is not really satisfactory. For instance, in the concrete case  it does not yield an illuminating description of  but this might well be in the nature of things because of the bad behavior of - valued analytic projection exhibited in Example 5.4. On the other hand, Bukhvalov's theorem mentioned above subordinates itself in a natural way as a special case (4.5), and some assertions about the position of  in  can be made (4.10, 4.12).
In what follows, for a function  on  and denotes function  on  and/or on . If  is defined on  (and  makes sense ),  means .
Lemma 4.2. Let    harmonic with corresponding series expansions 




 

In particular, if  and  then .
Proof.  with uniformly convergent series on  ( is fixed). Thus 



The other equality is proved in the same way. 
Corollary 4.3. Let  harmonic,  


Proof. apply the lemma to 
Follows from the lemma and ; the latter because  in  (2.3).
Part 2 of this corollary says, in other words, that  as  weak* in  a fact which also follows directly from the general theory of Poisson integral representation [8].
Definition 4.4. Let    
(Note that  is in  thus in  after the discussion in 4.1)
Remarks 4.5. Let  be antianalytic then:
 with  is a normed space (completeness will follow later). 
 increases to as . 

Where  is a constant independent of  (and ), and thus 
 the first inclusion being continuous.
 in particular: 
 increases to  as  in particular, for 
Proof.  If at all only  requires proof.  means  in  hence ,  in  (all ), the canonical map  being injective. Hence  .
 Take arbitrary , By Lemma 4.2,  




 First inequality: fix  of course, by scalar theory (or the discussion in 4.1). Hence ( cf. [17, p. 113] )






Now let 
Second inequality: 



 By Lemma 4.2, if  


On the other hand, by Lemma 4.2, 


 Apply  to ; then . 
Corollary 4.6. Let , be a sequence where  be antianalytic then, 
i.  with . 
ii.  increases to 
 where . 
iii. 
such that  is independent of .
Hence  an antianalytic and 

iv.  implies that 


For

implies that 
v. 
increases to  as 
For 









Proof. i. If  then If it means that in  hence  in  and the map  is injective.


That is  for every and  i.e. .
ii. For  Corollary 4.3, shows that

Theorem 4.7. The map  where  is a (well-defined) isometric isomorphism. 
Proof. First of all, for , by Remark 4.5, 



sincein  as noted earlier. Thus we can dispose of the  version. 
Now fix . For distinction, the functional  on  (earlier identified with ) will be denoted by  We have 



If f is an analytic monomial  then exists:

After Remark 4.5,  Whence



 as 
Since analytic monomials form a total subset of  (2.6),  exists for all  and  

If  the calculation above yields hence  in . This proves injectivity. 


Surjectivity and other estimates: Let  be given. Choose a Hahn-Banach extension ; by 2.1,  is given by:put the antianalytic projection of . For , by 4.2 and 4.3, 

Thus  represents  and  
which completes the proof.
	In particular,  is a Banach space. In terms of the canonical isometric isomorphism  (4.1), the proof yields.
Note 4.8. If , then  defines the functional  on . On the other hand, by Remark 4.4, , as well and thus defines, after the theorem, the functional . Fortunately, these two coincide, by Corollary 4.3, . 

Corollary 4.9. is an isometric isomorphism. In particular,  consists exactly of the antianalytic projections of functions in  (Here  denotes equivalence class mod 
 I want to show now that Bukhvalov’s theorem already derived in Section 4.1 is contained in Theorem 4.7:
Corollary 4.10. (Bukhvalov)  under the canonical map (see 4.1) iff  admits analytic projection .
Proof. In view of Theorem 4.7 (and note),  (canonically) iff  as spaces of functions on the disc, with (then automatically (4.3, ) equivalent norms  Suppose this holds and let . For any trigonometric polynomial , whence 

		

 
(last equality because  is of antianalytic type), so that  admits analytic projection . Conversely, if this latter condition is fulfilled with norm , say, then for any  antianalytic, 


 


so that  (with equivalent norms).
Corollary 4.11.  under the canonical map when  admits analytic projections .
Proof. Theorem 4.7 can show that  if and only if  as spaces of functions on the disc with equivalent norm  Now let  for any trigonometric polynomial sequence  where






Then  admits analytic projections .

Hence for any  antianalytics, then 











where is a norm, so that 
I continue with some assertions about the position of  in  As regards the weak* topology,
Proposition 4.12.  If  then  in the weak* topology  and  as  
 Antianalytic polynomials are weak* sequentially dense in  What is more,  sequentially dense in .
Proof.  Clear by Note 4.8 and Remark 4.5, . 
  Note that weak* denseness alone of antianalytic polynomials in  would follow already from the "abstract" criterion:  a Banach (or locally convex) space,  a vector subspace, then  is weak* dense in  iff

 Put here {antianalytic polynomials}.
To prove (the second assertion of)  take  and choose a sequence  then  weak*  and  Put  then also  weak* and  i.e.,  This is a  open set in , because the inclusions  are continuous by 4.5, . Since antianaltyic polynomials are  dense in , we can choose one, say  in  with 	 For  we have

	
so that  weak* in  as well.
Corollary 4.13. -valued antianalytic polynomials, equipped with , norm  that is , 
 
 

, .
 As regards the norm topology, we have 
Theorem 4.14.  If  has RNP, then  for all .
 The following are equivalent:
(a)  has RNP 
(b)  has a RNP and  is dense in 
 The following are equivalent:

      (a) 
      (b)  is closed in  
      (c)   is closed in  

Proof.  By Corollary 4.7, the antianalytic projection is a bounded surjective operator  [36] but if has RNP, then. 



Now fix  take any  with , and use that in . (2.3). It follows that 



 (a)(b) Follows from  (b)(a) by Corollary 4.7, we can identify with  The density assumption then says that the canonical map has dense image. Since  has a RNP, we have (2.17) and it is clear that the map is an isometry. 
It follows that  has dense image as well and is thus surjectve . This means  

so that  has RNP [36].

are trivial.  let be a constant such that  over . For a trigonometric polynomial  whence by Corollary 4.12, 


exactly as in the proof of Corollary 4.10, which also proves now (a)


Remarks 4.15. (a) Part  shows that  is in general not dense in , e.g., certainly not if if 

(b) In other words, the canonical map in general does not have dense image. In contrast to this, the analogous map  always has dense image--it contains all equivalence classes (mod  of --valued trigonometric polynomials.
(c) In the proof of , we have had  and it was therefore trivial that  is an isometry. I claim that this is always true, i.e., without the a  assumption on :
Take . since  in  after 2.3, one can write





The reverse inequality being trivial, the claim is proved. 
(d) Combining (b) and (c) yields:  is dense in  iff  is an isometric isomorphism.
Since in general,  and even  functions on the disc posses "boundary values"  on the circle only in a very weak sense, not much can be expected about boundary values of  functions. Anyway, if  then  with radial limit function  for all  I will pursue the question if this collection of  functions  give rise to single function  with the property that for all  a.e. (the exceptional set allowed to vary with ). (Of course, if  then its "boundary value") the unique  with does this job. But for a general  such a automatically scalarly measurable w.r.t. might exist without being in . The remote aim of this attempt would be, of course, to replace the action of the functional  as  by a single integral .
       After Corollary 4.8,  Fix  Then, for any function  the condition  a.e. is equivalent to saying  a.e., where the last equality sign identifies the scalar function  with its boundary value.
In the following examples , it will be shown that, even for  such a function  need not exist. In these examples,  In the first one,  is even strongly measurable, that is,  Since  has RNP, thus  this is naturally also the case in the last example. What makes this one more interesting is the fact that, due to the RNP of  and Theorem 4.14,  strongly in  for all  and the boundary behavior of  can still be as bad as it can be.
It is of course equivalent to construct these examples with the analytic instead of the antiana1lytic projection.

5. Examples
Lemma 5.1. For  and :


Proof. This is an elementary calculation and, of course, well known. 
I need some notation. The infinite dyadic tree is denoted by  [27].
For  put  so that  is theth dyadic interval of the th generation. A number  is called dyadic if it is of the from  for some . For  non–dyadic let  be the "branch" of the tree associated with  Obviously,  For  put  
Example 5.2.  There is  such that.
(a)  exists for   in . In particular,  because of Proposition 2.12; 
(b) there exists no function  with the property  a.e. 

Proof . I realize  as  and denote it again by  Let  be a positive null sequence, which will be specified later.

 Put  By the Pettis measurability theorem [15], By Lemma 5.1,


so that for  non–dyadic, 

 the limit taken coordinate-wise. (if  is dyadic, the coordinate-wise radial limit does not exist). To prove (a) and (b), it suffices to choose  in such a way that this last tuple does not blong to  for all (non-dyadic)  has to be independent of , of course.) Now fix  non-dyadic. Since always  one only has to estimate , or the same expression only along . but for 


 
e.g., for 
The next example lives in the canonical predual  of the James tree space  [27]. Since there is no lack of examples in more elementary Banach spaces.
Example 5.3. (B). There is  such that 
(a)  exists for no  in  in particular,  because of Proposition 2.12 (note that and that  is separable [27] ); 
(b) there exists no function  with the property  a.e.  
Example 5.4. . There is  such that 
(a)  exists for   in . In particular,  because of Proposition 2.12; 
(b) there exists  function  with the property  a.e.  
Proof . I realize  as  and denote it again by . Let  be a positive summable sequence, which will be specified later. 
 Put  It is clear that  is really in  for all  and that  Moreover,  is strongly measurable by Pettis theorem [15]; that is  
By Lemma 5.1,

So that for  non–dyadic ,

 (If  is dyadic, the coordinate-wise radial limit does not exist.) To prove (a) and (b), it suffices to choose  in such a way that this last tuple does not belong to  for all (non-dyadic) . This will be achieved through the following.
Lemma 5.5. For  non-dyadic,  


. 
Accepting the lemma for a moment, we conclude as follows: fix  non-dyadic, 







e.g, for 
Proof. W.l.o.g.,  then putting  gives . Now



 



  

since .

  Note. Would we not have given away half of the terms in the first estimate, we could achieve the (irrelevant) improvement .

Remark 5.6. Let  be the function just constructed. Since  and  is coordinate- wise real, we have ,
and  is the function just computed. Bearing in mind that, by Corollary 4.9,   there seems to be little hope for a simple description of 

References
1. D.J Aldous, Unconditional sequences and martingales in , Math. Proc. Cambridge Philos. Soc. 85 (1979), 117–123.
2. O. Blasco, Boundary values of functions in vector-valued Hardy spaces and geometry on Banach spaces, J. Funct. Anal., 78 (1988), 346–364.
3. O. Blasco, Hardy spaces of vector-valued functions. Duality, Trans. Amer. Math. Soc. 308 (1988), 495–507.
4. J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), 163–168.
5. J. Bourgain, Vector-valued singular integrals and the BMO duality, in “Probability Theory and Harmonic Analysis, (J. A. Chao and W. A. Woyczynski. Eds.), Decker, New York (1986), 1–19. 
6. A.V. Bukhvalov, On an analytic representation of operators with abstract norm, Dokl. Akad. Nauk SSSR, 208 (1973), 1012–1015 [Russian]: Soviet Math. Dokl. 14 (1973), 197–201. 
7. A. V. Bukhvalov, The analytic representation of operators with an abstract norm, Izv. Vysš. Učebn. Zaved. Mat. 11 (1975), 21–32 [Russian]: Soviet Math. (Iz. VUZ) 19, No. 11 (1975), 18–26 (1976).
8. A. V. Bukhvalov, Hardy spaces of vector-valued functions, Zap. Nauchn. Sem. Leningrad Otdel Mat. Inst. Steklova, 65 (1976), 5–16; [Russian] J. Soviet Math. 16 (1981), 1051–1059.
9. A. V. Bukhvalov, Continuity of operators in spaces of measurable vector-valued functions with applications to the study of Sobolev spaces and spaces of analytic functions in the vector-valued case, Dokl. Akad. Nauk SSSR, 246 (1979), 524–528 [Russian]; Soviet Math. Dokl. 20 (1979), 480–484.
10.  A. V. Bukhvalov, The duals to the paces of analytic vector-valued functions and the duality of functors generated by these spaces, Zap. Nauchn. Sem. Leningrad Otdel Mat. Inst. Stekloua 92 (1979), 30–50 [Russian]; (ZBI. 432:46050). 
11. A. V. Bukhvalov, A.A Danilevich, Boundary properties of analytic and harmonic functions with values in Banach space, Mat. Zametki 31 (1982), 203–214 [Russian]; Math. Notes Acad. Sci. USSR, 31 (1982), 104–110.
12. D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in “Proceedings Conf. Harm. Ana. in Honour of A. Zygmund, Univ. of Chicago, (Ill.), (1981),” 270–286.
13. D. L. Burkholder, Martingales and Fourier analysis in Banach spaces, in “Probability and Analysis, Varenna, Como, 1985” (G. Letta, M. Pratelli, Eds.), (Lect. Notes in Math., Vol. 1206), Springer, Berlin (1986), 61–108
14. A. A. Danilevich, Some boundary properties of abstract analytic functions, and their applications, Mat. Sb. 100 (1976), 507–533 [Russian]; Math. USSR-Sb. 29 (1976), 453–474.
15. J. Diestel, J. J. Uhl, Jr., “Vector Measures,” Math. Surveys, Vol. 15, Amer. Math. Soc., Providence, RI, 1977.
16. N. Dinculeanu, “Vector Measures,” Hochschulbücher für Math. Vol. 64, Deutscher Verlag Wissensch. Berlin, (1966).
17. P.L Duren, “Theory of  Spaces,” Pure Appl. Math., Vol. 38 Academic Press, New York, (1970).
18. C. Grossetête, Sur certains classes de fonctions harmoniques dans le disque à valeur dans un espace vectoriel topologique localement convexe, C. R. Acad. Sci. Paris, 273 (1971), 1048–1051.
19. J.A. Gutierrez, H. E. Lacey, On the Hilbert transform for Banach space valued functions, in “Martingale Theory in Harmonic Analysis and Banach Spaces, Cleveland, 1981,” Lect. Notes in Math. Vol. 939, Springer, Berlin (1982), 73–80
20. M. Heins, Vector-valued harmonic functions, Colloq. Math. Soc. J. Bolyai, Vol. 35; “Functions, Series, Operators,” North-Holland, Amsterdam (1980), 621–632.
21. W. Hensgen, “Hardy-Räume vektorwertiger Funktionen,” thesis, Munich, 1986.
22. W. Hensgen, On complementation of vector-valued Hardy spaces, Proc. Amer. Math. Soc. 104 (1988), 1153–1162.
23. E. Hille, R. S. Phillips, “Functional Analysis and Semi-Groups,” Amer. Math. Soc. Colloq. Publ., Vol. 31Amer. Math. Soc., Providence, RI, 1957.
24. A. Ionescu-Tulcea, C. Ionescu-Tulcea, “Topics in the Theory of Lifting, Ergeb. Math. Grenzgeb., Vol. 48, Springer, Berlin 1969.
25. W. Kaballo, On Fredholm operator valued -functions in “Proceedings, Toeplitz Mem. Conf., Tel Aviv,” Birkhäuser, Basel 1982, 313–319.
26. P. Koosis, “Introduction to  Spaces,” London Math. Soc. Lect. Note Ser., Vol. 40 Cambridge Univ. Press, Cambridge, 1980.
27. J. Lindenstrauss, and C. Stegall, Examples of separable spaces which do not contain  and whose duals are non-separable, Studia Math. 54 (1975), 81–105.
28. J. Lindenstrauss, and L. Tzafriri, “Classical Banach Spaces II,” Ergeb. Math. Grenzgeb., Vol. 97, Springer, Berlin, 1979.
29. B. Maurey, Système de Haar, II, in Sém. Maurey-Schwartz 1974–1975, École Polytechnique, Paris, 1975.
30. W. J. Ricker, Characterization of Poisson integrals of vector-valued functions and measures on the unit circle, Hokkaido Math. J. 16 (1987), 29–42.
31. M. Riesz, Sur les functions conjuguées, Math. Z. 27 (1928), 218–244.
32. J.L. Rubio de Francia, Martingale and integral transforms of Banach space valued functions, in “Probability in Banach spaces, Proceedings Zaragoza, 1985” (J. Bastero, M. San Miguel, Eds.), Lect. Notes in Math., Vol. 1221, Springer, Berlin, 1986, 195–222.
33. F. J. Ruiz and J. L. Torrea, Sobre el dual de espacios de Hardy de funciones con valores vectoriales, “Proceedings of the Eighth Portuguese-Spanish Conference on Mathematics,” Vol. II (Coímbra, 1981) Univ. Coímbra, Coímbra (1981).
34. R. Ryan, Boundary values of analytic vector-valued functions, Indag. Math. 65 (1962), 558–572.
35. R. Ryan, The F. and M. Riesz theorem for vector measures, Indag. Math. 66 (1963), 408–412.
36. L. Schwartz, Propriété de Radon-Nikodým, “Sém. Maurey-Schwartz, 1974–1975: Espaces , applications radonifiants et géométrie des espaces de Banach,” Exp. No. V-VI, Centre Math. Ecole Polytech., Paris, 1975.
37. L.V. Kantorovich, and G. P. Akilov, “Functional Analysis in Normed Spaces,” Pergamon, Oxford 1964.



6/21/2014
image45.wmf
(

)

Y

h

u

p

p

Î

¥

£

<

,

1


oleObject45.bin

image46.wmf
)

(

:

)

(

lim

1

J

J

*

®

=

u

e

r

u

i

r


oleObject46.bin

image47.wmf
(

)

Y

L

u

p

Î

*


oleObject47.bin

image48.wmf
[

]

(

)

.

Y

h

u

P

u

p

Î

=

*


oleObject48.bin

image49.wmf
{

f

Y

h

f

Y

H

P

P

:

)

(

)

(

Î

=


oleObject49.bin

image50.wmf
.

1

¥

£

<

P


oleObject50.bin

image51.wmf
þ

ý

ü

î

í

ì

¥

<

ò

=

®

=

+

<

p

J

p

J

2

0

1

0

2

)

(

ln

exp

sup

:

:

:

:

)

(

d

re

f

f

analytic

Y

D

f

Y

N

i

r


oleObject51.bin

image52.wmf
P

P

P

f

f

+

£

1

0


oleObject52.bin

image53.wmf
Y

D

f

®

:


oleObject53.bin

image54.wmf
1

£


oleObject54.bin

image55.wmf
).

(

X

N

f

¢

Î


oleObject55.bin

image56.wmf
)

(

lim

1

J

i

re

f

r

®


oleObject56.bin

image57.wmf
)

(

J


oleObject57.bin

image58.wmf
)).

,

(

,

(

X

X

X

¢

¢

s


oleObject58.bin

image59.wmf
,

1

¥

£

£

P


oleObject59.bin

image60.wmf
¥

£

£

p

1


oleObject60.bin

image61.wmf
[

]

{

}

.

1

)

(

:

:

¥

£

£

Î

=

P

Y

L

P

P

a

j

j


oleObject61.bin

image62.wmf
.

X

Y

¢

Ì


oleObject62.bin

image63.wmf
(

)

.

z

a

j


oleObject63.bin

image64.wmf
[

]

[

]

a

P

P

j

y

=


oleObject64.bin

image2.wmf
X

B


image65.wmf
)

(

)

(

Y

y

e

y

e

n

N

N

n

in

n

i

Î

å

=

-

=

J

J

j


oleObject65.bin

image66.wmf
.

0

)

(

J

J

j

in

N

n

n

i

a

e

y

e

å

=

=


oleObject66.bin

image67.wmf
,

u

a


oleObject67.bin

image68.wmf
,

j

a


oleObject68.bin

image69.wmf
(

)

),

(

0

0

J

J

J

i

n

n

n

in

n

n

n

i

a

re

z

z

y

e

r

y

re

u

=

å

=

å

=

-

-

¥

=

-¥

=


oleObject69.bin

oleObject2.bin

image70.wmf
[

]

(

)

[

]

(

)

z

C

z

n

z

P

a

n

n

a

j

j

j

j

:

)

(

ˆ

0

=

=

å

=

-¥

=


oleObject70.bin

image71.wmf
ò

ñ

á

=

ñ

á

¢

®

®

l

y

j

y

j

y

j

d

Y

T

Y

T

a

a

,

,

:

:

,

:


oleObject71.bin

image72.wmf
.

0

))

(

ˆ

)

(

ˆ

(

,

,

n

n

d

n

a

a

-

å

=

ò

ñ

á

=

ñ

á

=

³

y

j

y

j

l

y

j


oleObject72.bin

image73.wmf
,

1

¥

<

<

P


oleObject73.bin

image74.wmf
a

u

u

a


oleObject74.bin

image3.wmf
),

(

,

X

x

L

x

P

Î

Î

ñ

á

j


image75.wmf
a

j

j

a

:


oleObject75.bin

image76.wmf
[

]

j

j

C

a


oleObject76.bin

image77.wmf
(

)

(

)

)

0

(

)

(

)

(

)

0

(

)

(

u

z

u

z

u

u

z

u

z

u

z

u

a

a

a

a

-

+

=

-

+

=


oleObject77.bin

image78.wmf
,

\

RNP

aRNP

Y

Î


oleObject78.bin

image79.wmf
1

)

(

=

z

u

Y


oleObject79.bin

oleObject3.bin

image80.wmf
),

)(

(

)

(

0

J

J

i

r

n

n

n

re

z

C

z

e

z

u

a

=

×

-

=

å

=

¥

=


oleObject80.bin

image81.wmf
p

w

w

J

p

J

2

)

(

)

(

2

0

1

d

C

L

re

u

r

i

a

Y

ò

-

=

=


oleObject81.bin

image82.wmf
.

:

2

)

(

2

0

r

r

dt

t

C

g

p

p

=

ò

=


oleObject82.bin

image83.wmf
r

g


oleObject83.bin

image84.wmf
,

1

,

³

r

g

J


oleObject84.bin

image4.wmf
X

dt

t

e

n

¢

Î

ò

=

-

p

j

j

p

2

)

(

)

(

ˆ

2

0

int


image85.wmf
)

1

1

(sin

2

1

1

1

2

0

H

z

ce

dt

re

it

r

Ï

-

¥

®

ò

-

=

p

g

p


oleObject85.bin

image86.wmf
)

2

/

(

)

(

ln

2

0

p

J

J

p

d

re

u

Y

i

a

ò

+


oleObject86.bin

image87.wmf
.

1

)

(

,

.

,

ln

L

N

u

e

i

a

r

Ï

®¥

=

g


oleObject87.bin

image88.wmf
L

Y

=

1


oleObject88.bin

image89.wmf
)

(

)

(

Y

N

Y

C

®


oleObject89.bin

oleObject4.bin

image90.wmf
¥

=

£

¥

Î

0

1

),

(

sup

a

f

Y

C

f

f


oleObject90.bin

image91.wmf
,

1

<

R


oleObject91.bin

image92.wmf
)

(

)

(

it

it

e

R

u

e

u

R

=


oleObject92.bin

image93.wmf
)

(

Y

C

u

R

Î


oleObject93.bin

image94.wmf
1

=

¥

R

u


oleObject94.bin

image5.wmf
[

]

,

:

X

D

P

¢

®

j


image95.wmf
.

).

(

)

(

)

(

Rz

u

z

u

a

a

R

=


oleObject95.bin

image96.wmf
,

)

(

)

(

)

(

Rr

Y

i

a

Y

i

a

R

Rre

u

re

u

g

J

J

=

=


oleObject96.bin

image97.wmf
)

1

(

2

/

)

(

)

(

2

0

®

®

=

ò

+

r

Ln

Ln

d

re

u

Ln

R

Rr

Y

i

a

R

g

g

p

J

J

p


oleObject97.bin

image98.wmf
,

0

)

1

(

)

(

®

¥

®

=

R

e

u

R

a

R

g


oleObject98.bin

image99.wmf
)

(

)

,

(

,

X

H

X

X

L

q

q

a

¢

®

¢

j

j

a


oleObject99.bin

oleObject5.bin

image100.wmf
).

(

X

H

q

¢

o


oleObject100.bin

image101.wmf
(

)

ñ

á

=

£

Î

¢

r

R

p

f

x

p

H

f

X

p

H

rR

g

f

g

,

sup

1

)

(


oleObject101.bin

image102.wmf
(

)

(

)

.

,

sup

1

¢

£

Î

=

ñ

á

£

X

p

H

r

r

p

F

x

p

H

F

g

g

f


oleObject102.bin

image103.wmf
l

j

j

j

d

g

x

A

g

x

r

p

p

H

q

q

r

ñ

ò

á

£

ñ

á

£

Î

,

sup

,

1


oleObject103.bin

image104.wmf
(

)

l

d

g

f

A

r

p

f

X

p

H

f

q

ò

ñ

á

£

£

Î

,

sup

1


oleObject104.bin

image6.wmf
[

]

p

j

J

j

p

J

2

)

(

)

(

:

)

(

2

0

dt

t

t

P

re

P

r

i

ò

-

=


image105.wmf
(

)

.

¢

=

X

H

r

q

p

g

A


oleObject105.bin

image106.wmf
(

)

.

1

1

å

å

¥

=

¥

=

*

=

i

X

H

i

i

q

i

j

j

p

i

g

g


oleObject106.bin

image107.wmf
.

,

1

1

*

¥

=

¥

=

å

å

£

j

j

j

q

i

i

p

j

i

q

i

j

g

f

g

f


oleObject107.bin

image108.wmf
(

)

*

¥

=

¥

=

å

å

£

j

j

j

q

r

i

i

p

j

i

q

i

j

g

f

g

f

1

1

,


oleObject108.bin

image109.wmf
.

1

*

¥

=

å

£

j

j

q

i

i

p

j

g

f


oleObject109.bin

oleObject6.bin

image110.wmf
0

1

=

å

¥

=

*

i

q

i

j

g


oleObject110.bin

image111.wmf
.

0

=

i

g


oleObject111.bin

image112.wmf
,

0

1

=

å

¥

=

*

i

q

i

j

g


oleObject112.bin

image113.wmf
(

)

0

,

1

=

×

å

¥

=

i

r

i

g


oleObject113.bin

image114.wmf
(

)

0

,

1

=

å

¥

=

i

j

i

z

r

g


oleObject114.bin

image7.wmf
[

]

å

=

¥

-¥

=

n

in

n

i

e

r

n

re

P

J

J

j

j

)

(

ˆ

)

(


image115.wmf
1

0

£

£

r


oleObject115.bin

image116.wmf
)

1

(

0

,

,

*

®

®

-

£

ñ

á

-

ñ

á

r

g

f

f

g

f

g

f

q

P

r

r

r

r


oleObject116.bin

image117.wmf
f

f

r

®


oleObject117.bin

image118.wmf
J

J

im

i

xe

e

f

=

)

(


oleObject118.bin

image119.wmf
)

0

,

(

³

Î

m

X

x


oleObject119.bin

oleObject7.bin

image120.wmf
f

G

r

r

1

lim

®


oleObject120.bin

image121.wmf
q

q

L

H

g

x

Ì

Î

ñ

á

,


oleObject121.bin

image122.wmf
)

(

^

,

2

/

,

,

m

g

x

d

g

x

fe

g

f

r

r

im

r

-

ñ

á

=

ñ

á

=

ñ

á

p

J

J


oleObject122.bin

image123.wmf
)

(

^

,

)

(

^

,

m

g

x

m

g

x

r

m

-

ñ

á

®

-

ñ

á

=


oleObject123.bin

image124.wmf
.

1

®

r


oleObject124.bin

image8.wmf
ò

T

Ì

E

"

Î

E

Y

d

l

j


image125.wmf
,

,

0

0

)

(

^

,

X

x

n

n

g

x

Î

"

£

"

=

ñ

á


oleObject125.bin

image126.wmf
G

G

g

X

X

L

g

q

q

=

=

¢

Î

~

~

),

,

(

~


oleObject126.bin

image127.wmf
,

:

~

:

X

D

g

g

a

¢

®

=


oleObject127.bin

image128.wmf
.

)

1

(

~

~

,

~

,

,

®

=

=

ñ

á

®

ñ

á

=

ñ

á

r

Gf

f

G

g

f

g

f

g

f

r

r


oleObject128.bin

image129.wmf
[

]

j

j

a

q

q

q

X

H

X

H

X

X

L

a

),

(

)

(

/

)

,

(

*

0

¢

®

¢

¢


oleObject129.bin

oleObject8.bin

image130.wmf
ñ

á

£

ñ

á

=

£

¢

Î

£

¢

Î

g

f

g

f

f

a

q

C

q

g

X

q

H

g

a

q

g

X

q

H

g

P

a

,

sup

,

sup

)

(

1

*

)

(


oleObject130.bin

image131.wmf
P

q

q

C

q

g

X

q

H

g

f

C

g

f

£

ñ

á

=

£

¢

Î

,

sup

)

(


oleObject131.bin

image132.wmf
ñ

á

=

=

£

Î

<

<

r

P

f

X

P

L

f

r

q

r

r

q

g

f

g

g

,

sup

sup

sup

1

)

(

1

1


oleObject132.bin

image133.wmf
ñ

á

£

ñ

á

=

£

Î

<

£

Î

<

r

P

A

P

F

X

P

H

F

r

r

a

P

f

X

P

L

f

r

g

F

g

f

,

sup

sup

,

sup

sup

)

(

1

1

)

(

1


oleObject133.bin

image134.wmf
,

*

q

P

g

A

=


oleObject134.bin

image9.wmf
(

)

;

1

1

1

=

+

Î

"

ò

Î

q

p

L

g

Y

d

g

p

T

l

j


image135.wmf
(

)

n

a

j

g

g

X

H

g

g

p

a

j

g

g

f

f

j

q

n

j

j

q

j

n

j

+

+

=

£

+

+

Î

+

+

*

...

,

sup

1

1

...

...

1

1


oleObject135.bin

image136.wmf
(

)

n

a

j

C

g

g

X

H

g

g

g

g

f

j

q

j

q

n

j

j

q

n

+

+

£

£

+

+

Î

+

+

*

...

,

sup

1

~

...

...

1

1


oleObject136.bin

image137.wmf
(

)

.

~

...

,

sup

1

1

...

...

1

1

j

j

j

q

n

j

j

q

n

p

j

q

n

j

g

g

X

H

g

g

f

c

g

g

f

£

+

+

=

£

+

+

¢

Î

+

+

*


oleObject137.bin

image138.wmf
X

D

g

g

n

¢

®

:

,...,

1


oleObject138.bin

image139.wmf
(

)

j

j

q

r

n

r

q

n

g

g

g

g

+

+

=

+

+

£

...

sup

...

1

1

1


oleObject139.bin

oleObject9.bin

image140.wmf
(

)

(

)

r

n

j

f

X

L

f

r

g

g

f

j

p

j

j

j

p

j

+

+

=

£

Î

<

...

,

sup

sup

1

1

1


oleObject140.bin

image141.wmf
(

)

(

)

r

n

q

j

f

X

L

f

r

g

g

f

j

p

j

j

j

p

j

+

+

=

£

Î

<

...

,

sup

sup

1

1

1


oleObject141.bin

image142.wmf
(

)

(

)

r

n

j

A

F

X

H

F

r

g

g

F

j

p

j

p

j

j

j

p

+

+

£

£

Î

=

...

,

sup

sup

1

~

1


oleObject142.bin

image143.wmf
*

*

=

+

+

=

j

q

j

j

j

i

p

q

n

p

g

A

g

g

A

~

...

~

1


oleObject143.bin

image144.wmf
j

p

A

~


oleObject144.bin

image10.wmf
Y

n

Î

)

(

ˆ

j


image145.wmf
{

}

.

0

0

,

:

:

=

Î

¢

"

=

ñ

¢

á

Î

=

^

V

y

y

y

Y

y

V


oleObject145.bin

image146.wmf
,

0

)

/

1

(

,

®

£

-

£

ñ

-

á

P

q

n

n

P

n

n

f

n

h

p

f

h

P

f


oleObject146.bin

image147.wmf
h

h

a

a


oleObject147.bin

image148.wmf
h

g

a

=


oleObject148.bin

image149.wmf
h

h

r

®


oleObject149.bin

oleObject10.bin

image150.wmf
.

)

(

)

(

g

h

h

h

g

a

r

a

r

q

r

=

®

=

=


oleObject150.bin

image151.wmf
)

(

/

)

,

(

)

(

0

X

H

X

X

L

L

X

H

q

q

q

q

¢

¢

®

¢


oleObject151.bin

image152.wmf
)

(

)

(

)

(

0

0

X

L

X

H

X

H

q

q

q

¢

Ì

¢

=

¢


oleObject152.bin

image153.wmf
)

(

/

)

,

(

)

(

/

)

(

:

0

0

X

H

X

X

L

X

H

X

L

i

q

q

q

q

¢

¢

®

¢

¢


oleObject153.bin

image154.wmf
)

(

)

(

)

(

)

,

(

X

L

X

H

X

L

X

X

L

q

q

q

q

¢

=

¢

+

¢

=

¢

o


oleObject154.bin

image11.wmf
[

]

D

z

Y

z

P

Î

"

Î

)

(

j


image155.wmf
),

(

),

(

X

H

f

X

L

f

P

a

P

Î

Î


oleObject155.bin

image156.wmf
p

q

a

f

C

g

f

q

g

X

q

H

g

P

a

f

£

ñ

á

£

¢

Î

=

,

1

*

)

(

sup


oleObject156.bin

image157.wmf
g

e

RNP

RNP

a

X

.

,

\

Î

¢


oleObject157.bin

image158.wmf
.

,

¥

¥

=

¢

=

L

X

l

X


oleObject158.bin

image159.wmf
)

(

/

)

,

(

)

(

0

X

H

X

X

L

X

H

q

q

q

¢

¢

®

¢


oleObject159.bin

oleObject11.bin

image160.wmf
.

)

,

[

ln

2

1

)

(

Im

z

e

z

e

z

is

it

a

t

s

-

-

-

=

p

c


oleObject160.bin

image161.wmf
).

(

0

c

L

f

¥

Î


oleObject161.bin

image162.wmf
)

(

)

(

Im

lim

2

3

1

1

J

e

p

J

å

³

¥

=

®

m

m

m

i

a

r

S

re

f


oleObject162.bin

image163.wmf
å

-

³

¥

=

3

)

2

ln

2

ln

(

m

m

m

p

e


oleObject163.bin

image164.wmf
,

3

3

)

2

ln(

)

2

ln(

¥

=

å

-

å

=

¥

=

¥

=

m

m

m

m

m

e

p

e


oleObject164.bin

image12.wmf
)

,

(

)

,

(

)

(

X

X

L

X

X

L

y

L

P

P

P

¢

Ì

¢

Ì


image165.wmf
å

-

-

³

-

-

=

1

1

2

0

ln

)

(

m

j

i

mj

is

i

mj

it

m

e

e

e

e

S

J

J

J


oleObject165.bin

image166.wmf
å

-

-

³

-

-

=

1

1

2

0

ln

m

j

i

mj

is

i

mj

it

e

e

e

e

J

J


oleObject166.bin

image167.wmf
J

J

i

e

m

is

e

i

e

m

m

it

e

-

-

-

-

=

0

ln

1

2

,

ln


oleObject167.bin

image168.wmf
.

2

2

ln

ln

1

ln

1

ln

1

ln

m

i

i

i

e

e

e

p

J

J

J

J

-

³

-

³

-

-

³

-

-

-

-

=


oleObject168.bin

image169.wmf
0

m

T

Î

J


oleObject169.bin

oleObject12.bin

image170.wmf
)

2

/

2

ln(

2

)

(

p

J

m

m

S

³


oleObject170.bin

image171.wmf
))

(

(

1

tr

L

L

f

¥

Î


oleObject171.bin

image13.wmf
)

1

)(

(

¥

<

£

Î

P

y

L

f

P


oleObject13.bin

image14.wmf
))

(

.

(

Y

C

f

resp

Î


oleObject14.bin

image15.wmf
(

)

Y

L

T

p

®


oleObject15.bin

image16.wmf
å

-

=

N

N

n

in

n

e

y

J


oleObject16.bin

image17.wmf
(

)

Y

y

n

Î


oleObject17.bin

image18.wmf
)

(

Y

C


oleObject18.bin

image19.wmf
[

]

p

j

J

j

p

J

2

)

(

)

(

:

)

(

2

0

dt

t

t

C

re

C

r

i

-

ò

=


oleObject19.bin

image20.wmf
[

]

j

C

re

t

C

it

r

).

1

/(

1

)

(

-

=


oleObject20.bin

image21.wmf
[

]

å

=

¥

=

0

)

(

ˆ

)

(

n

n

z

n

z

C

j

j


oleObject21.bin

image22.wmf
[

]

Y

D

C

®

:

j


oleObject22.bin

image23.wmf
X

Y

¢

Ì


oleObject23.bin

image24.wmf
[

]

j

P


oleObject24.bin

image25.wmf
[

]

j

C


oleObject25.bin

image26.wmf
[

]

j

j

P

n

n

Û

<

"

=

0

0

)

(

ˆ


oleObject26.bin

image27.wmf
[

]

[

]

.

j

j

C

P

=

Û


oleObject27.bin

image28.wmf
å

=

N

n

in

n

e

y

0

J


oleObject28.bin

image29.wmf
(

)

Y

y

n

Î


oleObject29.bin

image30.wmf
{

Y

D

u

Y

h

p

®

=

:

:

)

(


oleObject30.bin

image31.wmf
}

¥

<

p

u


oleObject31.bin

image32.wmf
p

r

r

p

u

u

1

sup

<

=


oleObject32.bin

image33.wmf
(

)

(

)

.

:

;

:

it

it

r

r

re

u

e

u

Y

T

u

=

®


oleObject33.bin

image34.wmf
Y

D

u

®

:


oleObject34.bin

image1.wmf
f

ˆ


image35.wmf
X

Y

¢

=


oleObject35.bin

image36.wmf
.

X

x

Î

"


oleObject36.bin

image37.wmf
1

0


oleObject37.bin

image38.wmf
(

)

(

)

[

]

j

j

P

Y

h

X

X

L

P

Y

a

,

,

:

1

1

®

¢


oleObject38.bin

image39.wmf
2

0


oleObject39.bin

oleObject1.bin

image40.wmf
(

)

(

)

[

]

j

j

P

Y

h

X

X

L

P

p

p

Y

a

,

,

:

®

¢


oleObject40.bin

image41.wmf
.

1

¥

£

<

p


oleObject41.bin

image42.wmf
1

0


oleObject42.bin

image43.wmf
[

]

[

]

{

}

.

1

,

:

:

¥

£

£

Î

=

=

p

Y

L

P

p

j

j


oleObject43.bin

image44.wmf
)

(

)

(

lim

1

J

j

J

=

®

e

r

u

i

r


oleObject44.bin

