Improving Nitrogen Utilization Efficiency by Potato (Solanum tuberosum L.)

B. Effect of Irrigation Intervals, Nitrogen Rates and Veterra Hydrogel on Growth, Yield, Quality and Nutrient Uptake

Abd El-Badea S. Ezzat, Amal A. El-Awady and Hamdino M.I. Ahmed * Vegetable Research Department, Horticulture Research Institute, Agric. Res. Center, Ministry Agric., EGYPT * Corresponding author <u>hamdino@yahoo.com</u>

ABSTRACT: A complete randomized field experiment with four replications was conducted at Baramoon Research Station, Mansoura, Dakahlia Governorate, Egypt, using furrow irrigated potato (Solanum tuberosum L. cv. Cara). The effect of two irrigation intervals (15 and 26 days, starting after 1st irrigation) and three nitrogen fertilizer rates (120, 150, and 180 kg fed⁻¹) with or without veterra hydrogel VH (soil conditioner) on growth, yield, quality, nutritional status and plant water relationships on potato were studied in a clay loam soil. Obtained results could be summarized as follows: 1. Applied conditioners VH and irrigation every 26 days with 150 kg N fed⁻¹ positively affect vegetative growth characters. These include, plant height, relative growth rate and net assimilation rate in 1st season only. On the other hand, no significant differences in these traits were evident among the treatments in 2nd season of study. 2. The increases in total and marketable tuber yields as well as tuber grade No. 1 & 2 and decreases in grade No. 3 for soil application of VH and fertilized potatoes with 150 kg fed⁻¹ under irrigation every 26 days condition treatment over the other treatments, in both seasons. 3. The highest values of macro (NPK) and micronutrients (Fe, Mn and Zn) as well as tuber quality (DM, specific gravity and starch content), plant water relations (free water, total water) and total chlorophyll was obtained from potato receiving 150 kg N fed⁻¹ and soil amending with VH under 26 days irrigation intervals. 4. The highest values of NO₃ and NO₂ were recorded under the treatment received 180 kg N fed⁻¹ for both irrigation intervals without application of VH. As regard to residual NH_4^+ and $NO_3^$ in soil after harvesting, the greatest values were obtained in the treatments of 150 kg N fed¹ for both irrigation intervals with application of VH. Generally, it could be cocluded that application of veterra hydrogel as soil conditioner and irrigation every 26 days (4 times for growing season) with moderate N-fertilizers (150 kg fed⁻¹) to winter potatoes cv. Cara fields might gave the chance for efficient management of soil moisture and increasing nitrogen use efficiency and produce satisfactory and good marketable tuber yield with minimizing environmental impact of over-fertilization.

[Abd El-Badea S. Ezzat, Amal A. El-Awady and Hamdino M.I. Ahmed (2011) Improving Nitrogen Utilization Efficiency by Potato (*Solanum tuberosum* L.). B. Effect of Irrigation Intervals, Nitrogen Rates and Veterra Hydrogel on Growth, Yield, Quality and Nutrient Uptake. Nature and Science 2011;9(7):34-41]. (ISSN: 1545-0740). http://www.sciencepub.net.

Key words: potato; nitrogen ; irrigation; hydrogel

INTRODUCTION

Soil physical condition is one factor that can limit crop production. Poor soil physical condition can restrict water intake into the soil and subsequent movement, plant root development, and aeration of the soil. Optimal irrigation and nitrogen management remain a major challenge for improving water use efficiency, nitrogen use efficiency and vegetables yield in Egypt. Producers and researchers alike are interested in improving the physical condition of the soil and water use efficiency and, thus, enhance crop production. These goals can be accomplished in part through the use of good management techniques. In addition, there are amending materials that claim to improve the soil physical condition. Such materials are called soil conditioners (i.e., veterra hydrogel). Previous experiments on soil conditioning showed that polyacrylamide (PAM) solution was more effective in improving hydrophysical conditions (Williams *et al.*, 1967); increased the vegetative growth (Wallace *et al.*, 1986); reduced furrow runoff losses (Lentz *et al.*, 1998); reduced nitrogen losses (Bres and Watson, 1993) and increased a germinating plant's chance of survival (Lehrsch *et al.* 1996). Polyacrylamide applied to the irrigation water in small quantities has been shown to decrease the amount of sediment loss, as well as increase water infiltration into the soil in furrow-irrigated fields (Trout *et al.* 1993, Shock *et al.* 1994).

The use of hydrogels leads to increased waterholding capacity; increased availability of water to plants; improved soil structure and aeration; reduced compaction and hardpan conditions; improved tile drainage effectiveness; alkali soil reclamation; release of "locked" nutrients; better chemical incorporation; better root development; and higher yields and quality (Jhurry, 1997; Hickman and Whitney, 1998; El-Hady and Abo-Sedera, 2006). Orts *et al.* (2000) found that application of biopolymers to furrow irrigation water reduced suspended solids by more than 80% and exhibited the >90% runoff sediment reduction of some clay-rich soils. In Ontario, Shock *et al.*, (2009) reported that Stockosorb[®] is a soil conditioner that is designed to enhance the water retention capability of soils, produced higher total and marketable yield, and yield of U.S. No. 1 tubers of potatoes. In another study, Agaba *et al.* (2010) mentioned that soil amendment with super absorbent polyacrylate (SAP) hydrogel amendment decreased the hydraulic soil conductivity that might reduce plant transpiration and soil

evaporation. Therefore, this investigation carried out to illustrate the effect of veterra hydrogel as a soil conditioner, irrigation intervals and nitrogen fertilizer rates on potato growth, yield, quality, water-plant relationships and nutrient uptake.

MATERIALS AND METHODS

Trials were conducted at Baramoon Research Station, Mansoura, Dakahlia Governorate, Egypt, using potato (*Solanum tuberosum* L. cv. Cara). The potatoes were grown on clay loam soil and irrigated with furrow system (Fig. 1). Analyses of the soil are presented in Table 1 (Page, 1982; El-Hady and El-Sherif, 1988).

Table 1: Analytical data of El-Baramoon	clay	loam	soil
(a) Mechanical analysis			

(u) meenu	neur anary	515										
>2	Sand Coarse Fine >200 μ % 200-20 μ %		- Sil - 20-2	t 1%	Clay < 2 μ %		Soil Texture					
4	4.4		4.4		28.8 28.5 38.3		38.3		Clay loam			
(b) Chemic	al analysi	S							•			
рН 1:2.5	EC 1:5 dSm ⁻¹	CaCO3 (%)	CEC Meq/100 g	cmol OM (%)	Macro-nutrients (ppm)							
						Total			Available			
8.1	0.9	3.1	35.2	1.4	Ν	Р	K	Ν	P	Y K		
				Ι Γ	415	738	1015	32	6	55		
(c) Hydrop	hysical ar	nalysis										
Real density g/cm ³	Tota poros %	al sity c	Water holding apacity* %	Field capacity* %	Wilting percentage*		Wilting percentage*		Available water	able er Hydraulic conductivity mmh ⁻¹		Mean diameter of soil pores µ
2.66	2.9	7	48.97	40.2	16.4 18.6		12.3		2.35			

*on weight basis

The experimental design was a randomized complete block with four replicates. The treatments were: 1) irrigation intervals (Ir.) every 15 days + 180 kg N fed⁻¹; 2) Ir. every 15 days + 150 kg N fed⁻¹ + veterra hydrogel (VH); 3) Ir. every 15 days + 120 kg N fed⁻¹ + VH; 4) Ir. every 26 days + 180 kg N fed⁻¹; 5) Ir. every 26 days + 150 kg N fed⁻¹ + VH, and finally 6) Ir. every 26 days + 120 kg N fed⁻¹ + VH. Each plot was 11.25 m^2 and contained 3 rows; 75 cm wide and 5 m long. Potato seed pieces were planted manually on October 15 using a hand tool to dig holes at 25 cm intervals. Veterra hydrogel (Shering Co., Germany) medium dry granular was applied manually over the row at 37.3 kg/feddan (= 4200 m^2). After planting, the beds were reformed manually with an axe. All agronomic practices were conducted by the Ministry of Agriculture, Egypt.

Emergence started after 21 days from planting. Irrigation intervals were applied at 15 and 26 days after the first irrigation which was 21 days after planting, from October 30 to January 12. The number of irrigation events was 7 and 4 for both irrigation treatments, i. e., 15 and 26 days, respectively.

Nitrogen treatments in the form of ammonium nitrate (33.5% N) were applied at three equal doses, i. e. the first after emergence, and second and third doses with 2^{nd} and 3^{rd} irrigation, respectively. Single superphosphate (15.5% P₂O₅) was applied before planting at the rate of 75 kg P₂O₅ fed⁻¹. Potassium sulphate (48% K₂O) at the rate of 96 kg K₂O fed⁻¹was added in two equal doses with the 2^{nd} and 3^{rd} doses of ammonium nitrate.

Five plants from each plot were randomly taken after 70 and 90 days from planting for measuring the vegetative growth parameters, i. e., plant height (70 DAP), relative growth rate (R.G.R), net assimilation rate (N.A.R). R.G.R was estimated using the following equation (Richards, 1969):

Where, W1 and W2 are the shoot dry weight at the timing of sampling T1 and T2, respectively. N.A.R.; the method of McCollum (1978) was used to determine Net assimilation rate (N.A.R.) at the period of 70 and 90 days. The following formula was used:

W2 - W1	Log L2 – Log L1
N.A.R = X	
L2 – L1	T2 - T1

Where, W1 and W2 are shoot dry weight, L2 and L1 are the leaf area plant⁻¹ (Koller, 1972), but T1 and T2 refer to timing of sampling.

Total, free and bound water in the fourth upper leaf of potato plants were determined at 70 days after planting according to the method described by Gosev (1960). Also, at the same time, total chlorophyll was determined according to Wettestein (1957).

At the harvesting time (130 DAP), the tuber yield and yield grading per feddan were recorded. Tubers were graded according to their diameter (grade 1, > 60 mm; grade 2, 30: 60 mm and grade 3, < 30 mm). Marketable tubers if any of the following conditions occurred: growth cracks, bottleneck shape, abnormally curved shape, or two or more knobs.

A 20-tuber sample from each plot was selected from the largest sizes to evaluate tuber quality (dry matter, specific gravity, starch, and nitrate and nitrite content) according to the methods described by (AOAC, 1990). N, P and K concentrations in the digested dry weight of tubers were determined according to the methods described by Olsen and Sommers (1982). Fe, Mn and Zn contents in dry matter of tubers were determined by atomic absorption according to Rangana (1979). Residual available nitrogen in soil samples after harvesting the plants was determined by Mg O-Devarda alloy method (Black, 1965).

Data from all trials were analyzed according to the procedure described by Snedecor and Cochran (1982). Comparisons among means of treatments were tested using the last significant differences (LSD) at 5 % level of probability.

RESULTS AND DISCUSSION 1. Vegetative growth:

The conditioning effect of hydrogel with irrigation intervals and N-rates on vegetative growth was estimated at 70 and 90 days after planting (Table 2; Fig 2 & 3). In 1st season (2007/08), plant height, relative growth rate and net assimilation rate tended to increase significantly due to application of veterra hydrogel VH plus irrigation every 26 days and 150 kg N fed⁻¹. Meanwhile, no significant differences in these traits were evident among the treatments in 2^{nd} season.

Also, it is evident from the data in Table 2 the effect of VH plus irrigation intervals and nitrogen rates on total chlorophyll of potato leaves were significant in both season. The highest values and healthy plants were obtained from adding VH plus 150 or 120 kg N Fed⁻¹ and irrigation every 26 days intervals (Fig. 3).

These results could be attributed to the great role of hydrogel to reduce watering requirements of container grown plants (Taylor and Halfacre, 1986), enhance plant growth (Wallace *et al.*, 1986), reduce nitrogen losses (Bres and Watson, 1993; Jhurry, 1997), increase nutrient retention of media (Henderson and Hensley, 1985), and increase the shelf-life of pot crops (Ferrazza, 1974; Gehring and Lewis, 1980).

El-Sayed *et al.* (1990) reported that, generally, dry weight, leaf area, succulence, chloroplast pigments (chlorophyll a, chlorophyll b, and carotenoids), photosynthetic activity, total amino acids, proline, and protein contents were increased with polymer incorporation compared with pure sand of all species (i. e., tomato, lettuce and cucumber) under saline conditions.

veterra nyaroger	territu njuloget mi zvoti vo unu zvoti v beusonst													
Characters	Plant height (cm)		Relative g (mg/gi	rowth rate m/day)	Net assimi (mg/cn	lation rate n ² /day)	Total chlorophyll (mg/g F. W.)							
Treatments	2007/08	2008/09	2007/08	2008/09	2007/08	2008/09	2007/08	2008/09						
T1.	50.00	49.67	47.839	48.735	0.11382	0.11460	25.88	25.00						
T2.	49.33	49.33	47.019	47.834	0.11252	0.11323	25.62	25.08						
T3.	49.67	49.00	49.258	49.802	0.11488	0.11508	24.14	24.13						
T4.	48.00	48.67	45.466	47.638	0.10662	0.11297	24.60	24.22						
Т5.	51.33	50.00	50.424	49.415	0.11783	0.11540	27.93	26.60						
Тб.	51.67	49.67	48.883	48.953	0.11392	0.11483	26.81	26.16						
LSD at 5%	1.49	NS	0.640	NS	0.00527	NS	2.15	0.78						

Table 2: Vegetative growth characters of potato plants as affected by irrigation intervals, nitrogen rates and veterra hydrogel in 2007/08 and 2008/09 seasons.

T1. Ir. every 15 Ds + N 180 kg; T2. Ir. 15 Ds + N 150kg + VH; T3. Ir. 15 Ds + N 120 kg + VH; T4. Ir. 26 Ds + N 180 kg; T5. Ir. 26 Ds + N 150 kg + VH, and T6. Ir. 26 Ds + N 120 kg + VH

Ir.: Irrigation; Ds: Days intervals; VH: veterra hydrogel; All N-rates per Feddan=4200 m²

2. Yield and yield components:

Values of total tuber yield and yield grading influenced by treating the soil with hydrogel and/or irrigation intervals as well as N-rates as illustrated in Table 3 reveal that soil conditioner VH, irrigation every 26 days and 150 kg N fed⁻¹ significantly (p < 0.05) increase total tuber yield, marketable yield and grade 1 & 2. On the other hand, it significantly decreased tuber grade 3.

Also, it was evident that, these treatments considerably differed among them in their effect and that, application hydrogel VH to the soil and fertilized with 150 kg N fed⁻¹ showed satisfactory yield increment of 15.28 and 15.48% (for both seasons, respectively; Fig 4) over non application one with 180 kg fed⁻¹ (in case of irrigation every 26 days intervals). Moreover, the percentage increases of superior treatment over the control (irrigation every 15 days + 150 kg N fed⁻¹) reached to 8.67 and 6.67%, in both seasons, respectively. Yield increases were

due to the increases of vegetative growth traits, chlorophyll content (Table 2) and tuber macro and micronutrients (Table 4).

These yield enhancements as a result of hydrogel application are in agreement with the results obtained by Eiasu *et al.* (2007) who found that the pure gel polymer, especially at higher fertilizer rate, improved total and marketable tuber yield.

These results were accordance to those obtained by Shock *et al.*, (2009). They found that application of Stockosorb[®] (soil conditioner), produced higher total and marketable yield, and yield of U.S. No. 1 tubers of potatoes.

In another study, Yangyuoru *et al.* (2006) found that increases in maize yields over the control were due to the improved water retention ability of the soils (sandy/clay/loam) amended with the natural or synthetic soil conditioner.

Table 3: Total tuber yield and yield components of potato plants as affected by irrigation intervals, nitrogen rates and veterra hydrogel in 2007/08 and 2008/09 seasons.

Characters	Tuber yield (ton fed ⁻¹)												
	Gra	de 1	Gra	de 2	Gra	de 3	Marketable		Total		Relative yield (%)		
Treatments	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	
T1.	5.92	5.95	7.10	7.15	0.52	0.61	13.02	13.10	13.54	13.71	106.6	108.8	
T2.	5.55	5.60	7.05	6.90	0.58	0.68	12.60	12.50	13.18	13.18	103.8	104.6	
T3.	5.20	5.30	6.90	6.75	0.62	0.73	12.10	12.05	12.72	12.78	100.2	101.4	
T4.	5.10	5.15	6.90	6.60	0.70	0.85	12.00	11.75	12.70	12.60	100.0	100.0	
T5.	6.45	6.45	7.71	7.60	0.48	0.50	14.16	14.05	14.64	14.50	115.3	115.5	
T6.	6.15	6.20	7.36	7.45	0.50	0.56	13.51	13.65	14.01	14.21	110.3	112.8	
LSD at 5%	0.24	0.19	0.12	0.19	0.09	0.09	0.32	0.38	0.41	0.43			

T1. Ir. every 15 Ds + N 180 kg; T2. Ir. 15 Ds + N 150kg + VH; T3. Ir. 15 Ds + N 120 kg + VH; T4. Ir. 26 Ds + N 180 kg; T5. Ir. 26 Ds + N 150 kg + VH, and T6. Ir. 26 Ds + N 120 kg + VH

Ir.: Irrigation; Ds: Days intervals; VH: veterra hydrogel; All N-rates per Feddan=4200 m²; S1: 1st season; 2nd season

3. Macro and micronutrients content in tubers:

From such data in Table 4, it is evident that the treatments had a significant effect on chemical constituents of potato tubers. All tested chemical constituents were significantly increased with application of VH, in two seasons. The highest values of NPK as well as micronutrients (Fe, Mn and Zn) were obtained from 26 days intervals and fertilized potato plants with 150 kg fed⁻¹ in the presence of VH, while, the lowest values were recorded with 26 days irrigation intervals + 180 kg N fed⁻¹ in the absence of VH. In this respect, Doering and Gericke (1984) indicated that soil conditioner application was effective in supplying nutrients to plants. The increase in macro- and micro-nutrients uptake may be due to the effect of veterra hydrogel in improving hydrophysical conditions as reported by Awad (1990) and El-Hady and Abo-Sedera (2006).

4. Tuber quality:

Data presented in Table 5 show that, there were significant differences in tuber quality parameters, and nitrate as well as nitrite content in potato tuber, in both seasons. Highest tuber dry matter (1st season), specific gravity (2nd season) and starch content (1st season) was obtained under the treatment received VH with 150 kg N fed⁻¹ and irrigated every 26 days.

It could be attributed that application of VH maintain the nutrients supply to the plants during growth period more than non application one. These increases in dry matter, starch and specific gravity may be attributed to the effect of VH on increasing the availability of certain elements and their supply to plant (Table 4). These results were confirmed with those of Eiasu *et al.* (2007) and Shock *et al.* (2009).

Regarding, nitrate and nitrite content in tuber, the highest values were recorded under the treatment received $180 \text{ kg N fed}^{-1}$ for both irrigation intervals in the absence of VH. On the other hand, the lowest

values were found in treatments amended with the lowest dose of N (120 kg fed⁻¹) with VH, in both seasons. Similarly, Walker (1975) found a close correlation between application of N-fertilizer and accumulation of nitrate. This results may be

attributed to regulate the release of nitrogen due to application of VH and making it as a slow-acting nitrogen fertilizer, as conducted by Awad (1990).

Table 4: Macro and micronutrients content of potato tubers as affected by irrigation intervals, nitrogen rates and veterra hydrogel in 2007/08 and 2008/09 seasons.

Characters	N uptake		P uptake		K up	K uptake		Fe		In	Zn	
	(mg/1	100 g)	(mg /1	100 g)	(mg/100 g)		(mg/1 kg)		(mg/1 kg)		(mg/1 kg)	
Treatments	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2
T1.	810.9	792.1	86.9	91.2	1336.2	1282.1	42.6	40.1	16.5	16.8	13.32	13.17
Т2.	825.5	813.1	88.2	90.7	1329.1	1098.0	40.8	38.2	15.4	15.9	12.76	13.00
Т3.	692.5	709.3	84.9	84.0	1257.1	1018.1	38.6	36.1	14.8	15.1	11.85	12.76
T4.	701.5	698.8	83.1	82.5	1115.5	1211.3	36.7	36.0	14.0	14.9	11.80	12.58
Т5.	870.5	890.2	93.6	95.2	1412.4	1390.2	43.8	42.6	17.3	18.0	14.08	14.00
Тб.	862.3	886.1	92.9	94.9	1408.2	1362.4	44.2	43.5	18.8	18.1	14.11	14.20
LSD at 5%	79.7	78.8	1.9	3.5	76.2	102.9	4.7	4.7	2.9	1.9	1.99	N.S

T1. Ir. every 15 Ds + N 180 kg; T2. Ir. 15 Ds + N 150kg + VH; T3. Ir. 15 Ds + N 120 kg + VH; T4. Ir. 26 Ds + N 180 kg; T5. Ir. 26 Ds + N 150 kg + VH, and T6. Ir. 26 Ds + N 120 kg + VH

Ir.: Irrigation; Ds: Days intervals; VH: veterra hydrogel; All N-rates per Feddan=4200 m²; S1: 1st season; 2nd season

Table 5: Tuber quality of potato as affected by irrigation intervals, nitrogen rates and veterra hydrogel in 2007/08 and 2008/09 seasons.

Characters	Tuber dry matter		Specific gravity of		Sta	rch	NO ₃ accu	mulation	NO ₂ accumulation		
	(%	6)	tuber		(0	%)	(ppm)	in tuber	(ppm) in tuber		
Treatments	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	
T1.	21.162	22.418	1.0850	1.0810	14.40	14.34	69.30	67.62	0.60	0.58	
Т2.	21.312	22.538	1.0848	1.0832	14.65	14.73	55.14	51.74	0.58	0.54	
Т3.	21.278	22.520	1.0872	1.0798	14.03	14.46	49.08	42.32	0.36	0.32	
Т4.	21.498	22.622	1.0853	1.0841	14.80	14.55	65.38	63.40	0.52	0.50	
Т5.	22.830	22.716	1.0883	1.0890	15.70	14.78	62.18	60.92	0.48	0.48	
Т6.	22.512	22.318	1.0862	1.0885	15.52	14.62	58.72	55.37	0.40	0.40	
LSD at 5%	0.370	N.S	N.S	0.002	0.26	N.S	9.96	8.03	0.09	0.08	

T1. Ir. every 15 Ds + N 180 kg; T2. Ir. 15 Ds + N 150kg + VH; T3. Ir. 15 Ds + N 120 kg + VH; T4. Ir. 26 Ds + N 180 kg; T5. Ir. 26 Ds + N 150 kg + VH, and T6. Ir. 26 Ds + N 120 kg + VH

Ir.: Irrigation; Ds: Days intervals; VH: veterra hydrogel; All N-rates per Feddan=4200 m²; S1: 1st season; 2nd season

5. Plant water relations & residual N-sources in soil:

As for the effect of veterra hydrogel, N-rates and irrigation intervals, it is obvious from the data in Table 6 that application of VH with 150 kg N fed⁻¹ and 26 days irrigation intervals significantly increased both free and total water (%) in potato leaf tissues, in both seasons, compared with other treatments.

Concerning bound water (%), maximum values were obtained under water stress or irrigation (26 days) with high rates of N-applied (180 kg fed⁻¹) and this trend was opposite to that of free or total water percentages. In this context, Agaba *et al.* (2010) mentioned that the 0.4% hydrogel amendment significantly (p < 0.05) increased the plant available water PAW by a factor of about three in sand, two fold in silt loam

and one fold in sandy loam, loam and clay soils compared to the control. Similarly, the addition of either 0.2 or 0.4% hydrogel to the five soil types resulted in prolonged tree survival compared to the controls.

As regard to residual ammonium and nitrate in soil after harvesting, data in Table 6 indicate that the greatest residual available N was obtained in the treatments of 150 kg N fed⁻¹ for both irrigation intervals with application of VH. This result may be attributed to the effect of conditioners (VH) on increasing residual N-sources in soil samples as indicated by El-Hady and Abo-Sedera (2006).

Characters	Free water (%)		Bound water (%)		Total (%	water %)	Residua (mg/10	l NH4-N 0 g soil)	Residual NO ₃ -N (mg/100 g soil)	
Treatments	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2
T1.	42.15	41.86	48.28	47.36	90.43	89.22	3.12	3.30	3.58	3.68
T2.	38.08	38.12	51.90	50.87	89.98	88.99	5.10	5.80	4.18	4.31
Т3.	36.60	35.95	52.13	51.36	88.73	87.31	4.60	4.75	2.47	2.50
T4.	33.72	32.86	3.88	52.76	87.60	85.62	4.80	4.92	2.32	2.50
T5.	47.32	45.82	46.62	46.78	93.94	92.60	5.50	5.62	4.20	4.03
T6.	43.67	42.18	47.36	47.30	91.03	89.48	5.08	5.00	3.50	3.52
LSD at 5%	1.91	1.99	1.85	3.93	1.92	2.41	0.46	0.40	0.39	0.38

Table 6: Plant water relations and residual N sources in soil as affected by irrigation intervals, nitrogen rates and veterra hydrogel in 2007/08 and 2008/09 seasons.

T1. Ir. every 15 Ds + N 180 kg; T2. Ir. 15 Ds + N 150kg + VH; T3. Ir. 15 Ds + N 120 kg + VH; T4. Ir. 26 Ds + N 180 kg; T5. Ir. 26 Ds + N 150 kg + VH, and T6. Ir. 26 Ds + N 120 kg + VH

Ir.: Irrigation; Ds: Days intervals; VH: veterra hydrogel; All N-rates per Feddan=4200 m²; S1: 1st season; 2nd season

26 days with application VH

Correspondence to:

Dr. Hamdino M.I. Ahmed Horticulture Research Institute, 9 Gamaa Street, Giza 12619, Giza, EGYPT Cell Phone: 002 018 1483434 & 002 010 6215073 Office Phone: 002 050 226 4976 Fax: 00 2 02 3572 1628 E-mail <u>hamdino@yahoo.com</u> hamdino.ahmed@gmail.com

REFERENCES

- Agaba, H.; L. J. B. Orikiriza; J. F. O. Esegu; J. Obua; J. D. Kabasa, and A. Hüttermann. 2010. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions. Clean-Soil, Air, Water, 38 (4): 328-335.
- [2] AOAC (Association of Official Analytical Chemists) .1990. Official Methods of Analysis. 15th Ed., Washington, DC, USA.
- [3] Awad, E. 1990. Effect of veterra hydrogel and nitrogen fertilizers on wheat. Zagazig J. Agric. Res., 17 (4B): 1425-1431.
- [4] Black, C. A. 1965. Methods of Soil Analysis. Part 1 and 2. Amer. Soc. Agron. Inc., Madison, Wisconsin, USA.
- [5] Bres, W. and L. A. Weston. 1993. Influence of gel additives on nitrate, ammonium and water retention and tomato growth in a soilless medium. HortSci., 28: 1005-1007.
- [6] Doering, H. W. and R. Gericke. 1984. Practice and problems of agricultural land use in the southeast Sahara. Berliner geowissensch. Abhandlg. A 50: 325-334.
- [7] Eiasu, B. K.; P. Soundy, and P. S. Hammes. 2007. Response of potato (*Solanum tuberosum*) tuber yield components to gel-polymer soil amendments and irrigation regimes. New Zealand J. Crop Hort. Sci., 35 (1): 25-31.
- [8] El-Hady, O. A and A. F. El-Sherif. 1988. Egyptian bentonitic deposits as soilamendments II. Hydrophysical characteristics and mechanical strength of sandy soils treated with bentonites. *Egypt. J. Soil Sci.*, 28: 215–33
- [9] EL-Hady, O. A. and S. A. Abo-Sedera. 2006. Conditioning effect of composts and acrylamide hydrogels on a sandy calcareous soil. II-Physicobio-chemical properties of the soil. Int. J. Agri. Biol., 8 (6): 876-884.
- [10] El-Sayed, H.; R. C. Kirkwood, and N. B. Graham. 1990. The effect of a hydrogel polymer on the growth of certain horticultural crops under saline conditions. J. Exp. Botany, 42 (7): 891-899.
- [11] Ferrazza, J. 1974. Grower evaluates soil amendment. Flor. Rev., 155(4019):27, 69-70.

- [12] Gehring, J. M. and A. J. Lewis. 1980. Effect of hydrogel on wilting and moisture stress of bedding plants. J. Amer. Soc. Hort. Sci., 105: 511-513.
- [13] Gosev, N. A. 1960. Some methods in studying plant water relations. Leningrad Acad. of Science, U.S.S.R. (C.F. Hussein, M.H., Ph.D. Thesis, Fac. Agric., Ain Shams Univ., Cairo, Egypt, 1973).
- [14] Henderson, J. C. and D. L. Hensley. 1985. Ammonium and nitrate retention by a hydrophilic gel. HortSci., 20: 667-668.
- [15] Hickman, J. S. and D. A. Whitney. 1988. Soil conditioners. North Central Regional Extension Publication 295. 4 pp.
- [16] Jhurry, D. 1997. Agricultural polymers. Food and Agricultural Research Council, Reduit, University of Mauritius, Mauritius, Pp. 109-113.
- [17] Koller, H. R. 1972. Leaf area-leaf weight relationships in the Soybean canopy. Crop Sci., 12 (3/4): 180-183.
- [18] Lehrsch, G.A. and Kincaid, D.C. and Lentz, R.D. (1996) PAM Spray effects on sugarbeet emergence. In: Sojka, R.E. and Lentz, R.D. (eds.) Managing irrigation-induced erosion and infiltration with polyacrylamide. University of Idaho Miscellaneous Publication No. 101-96. pp. 115-118.
- [19] Lentz, R. D.; R. E. Sojka, and C.W. Robbins. 1998. Reducing soil and nutrient losses from furrow irrigated fields with polymer applications. Adv. GeoEco., 31: 1233-1238.
- [20] McCollum, R. E. 1978. Analysis of potato growth under differing P regimes. II. Time by P-status interactions for growth and leaf efficiency. Agron. J., 70 (1/2): 58-67.
- [21] Olsen, S. R., and L. E. Sommers. 1982. Phosphorus. *In*: Page, A. L., R. H. Miller, and D. R. Keeney (Eds.). Methods of Soil Analysis. Part 2, Amer. Soc. Agron., Madison, W. I., USA, pp. 403-430
- [22] Orts, W. J.; R. E. Soika, and G. M. Glenn. 2000. Biopolymer additives to reduce erosion-induced soil losses during irrigation. Indus. Crops Prod., 11 (1): 19-29.
- [23] Page, A. L. 1982. Methods of Soil Analysis. 2nd Ed., Part 1, Soil Sci. Soc. Amer., Madison, Wisc., USA.
- [24] Rangana, S. 1979. Manual Analysis of Fruit and Vegetable Products. Tata McGraw Hill Pub. Co. Ltd. New Delhi, pp 363.
- [25] Richards, F. J. 1969. Plant Physiology. The Quantitative Analysis of Growth, pp. 3-77.
- [26] Shock, C. C.; E. Feibert, and L. D. Saunders. 2009. Evaluation of stockosorb[®] as a soil conditioner for potato production. Malheur Exper. Station, Oregon State Univ., Ontario, OR. USA, 4 pp.

- [27] Shock, C. C.; J. Zattiero; K. Kantola, and L. D. Saunders. 1994. Comparative cost and effectiveness of polyacrylamide and straw mulch on sediment loss from furrow irrigated potatoes, Oregon state University Agricultural Experiment Station Special Report 947:128-137.
- [28] Snedecor, G. W. and W. G. Cochran. 1982. Statistical Methods. 7th Ed. 2nd Printing, Iowa State. Univ. Press, Ame., USA, pp 507.
- [29] Taylor, K. C. and R. G. Halfacre. 1986. The effect of hydrophilic polymer on nledia water retention and nutrient availability to *Ligustrum lucidum*. HortScience, 21: 1159-1161.
- [30] Trout, T. J.; R. E. Sojka, and R. D. Lentz. 1993. Polyacrylamide effect on furrow erosion and infiltration, American Society of Agricultural Engineers, Spokane, Washington.

Date of submission 05/03/2011

- [31] Walker, R. 1975. Naturally occurring nitrate/nitrite in foods. J. Sci. Fd. Agric., 25: 1735.
- [32] Wallace, A.; G. A. Wallace, and A. M. Abouzamzam. 1986. Effects of excess levels of a polymer as a soil conditioner on yields and mineral nutrition of plants. Soil Sci. 141, 377-380.
- [33] Wettestein, D. 1957. Chlorophyll Lethale un der Submikroskopische Formwechsel der Plastiden. Exptl. Cell Reso., 12: 427-506.
- [34] Williams, B. G.; D. J. Greenland, and J. P. Quirk. 1967. The tensile strength of soil cores containing polyvinyl alcohol. Aust. J. Soil Res., 85-92.
- [35] Yangyuoru, M.; E. Boateng; S. G. K. Adiku; D. Acquah1; T. A. Adjadeh, and F. Mawunya. 2006. Effects of natural and synthetic soil conditioners on soil moisture retention and maize yield. West Africa J. Appl. Eco., Volume 9 (Jan Jun), 8 pp.

