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Abstract
Objective. The aim of this paper was to study the actions of the genes associated with toxic liver injury during liver 

regeneration (LR) at transcriptional level. Methods. The toxic liver injury-associated genes were obtained by collect-
ing the data of databases and referring to thesis, and the gene expression changes in rat regenerating liver after partial 
hepatectomy (PH) were checked by the Rat Genome 230 2.0 Array. Results. A total of 87 genes were found to be liver 
regeneration-associated. The initial and total expressing number of 87 gene occurring in initial phase (0.5 – 4 h after PH), 
G0/G1 transition (4 – 6 h after PH), cell proliferation (6 – 66 h after PH), cell differentiation and structure-functional 
reconstruction (72 – 168 h after PH) were 31, 4, 13, 1 and 31, 23, 41, 34, respectively, illustrating that the associated 
genes were triggered mainly at early stage of LR, and worked at different stages. According to expression similarity, these 
genes were classified into 5 types including only up-regulated, predominantly up-, only down-, predominantly down-, 
and equally up- and down-, involving 21, 8, 9, 5 and 2 genes respectively; and the total frequencies of up-regulation and 
down-regulation were 236 and 106 respectively, demonstrating that expression level of most genes was increased during 
LR, while that of the minor was decreased. The classification of their time relevance and expression patterns into 15 and 
21 groups respectively, show that the cellular physiological and biochemical activities during LR were staggered, diverse 
and complicated. Conclusion. The drug or hepatotoxin metabolism-involved genes were mainly up-regulated between 18 
– 120 h; oxidative stress-induced apoptotic-related genes and proliferative-related genes acted together to increase liver 
cell number at a fixed rate. [Life Science Journal. 2007; 4(3): 42 – 48] (ISSN: 1097 – 8135).
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1  Introduction

Partial hepatectomy (PH)[1], liver injury or hepatotoxin 
administration[2], acting as stimulus, readily induce the 
rapid replication of remnant hepatocytes to restore liver 
mass, which is called liver regeneration (LR). Generally, 
based on hepatic physiological activities, the regenerative 
process is divided into initial phase (0.5 – 4 h after PH), 
G0/G1 transition (4 – 6 h after PH), cell proliferation (6 – 
66 h after PH), cell differentiation and structure-functional

reorganization (72 – 168 h after PH)[3], and involves many 
physiological and biochemical events including cell ac-
tivation, de-differentiation, proliferation and re-differen-
tiation[4], which undergo the regulation by many factors, 
such as cytokines, hormones, drugs and hepatotoxin[5].

The liver is the main detoxification organ of the body[6]. 
And the impairment of liver detoxification function would 
lead to severe liver failure[7]. The toxic liver injury is an 
acute or chronic liver disease caused by hepatotoxin[8] 
and mainly occurs to hepatocyte. The pathogenesis is 
that the oxidative poison caused lipocyte and hepatocyte 
to undergo denaturalization, necrosis, peroxisome 
hyperplasia, H2O2 metabolism perturbation, the depression 
of antidotic function of liver, which leads to cells stress 
injury. Furthermore, some other hepatotoxin may 
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inhibit or interfere with protein synthesis, bile secretion, 
haemachrome synthesis or induce cells mutation and 
subsequently bring liver diseases by disturbing metabolism 
obstacle respectively.

Both PH and toxic liver injury can cause compensatory 
proliferation of the liver cells more or less[11,12]. Studying 
the correlation between the physiological and biochemical 
activities in LR and that in liver toxicity will contribute to 
clarifying the molecular mechanism of LR and to estab-
lishing the treatment, prevention methods of the toxic 
liver injury[18]. Therefore, we employed the Rat Genome 
230 2.0 Array containing 87 toxic liver injury-involved 
genes to check genes expression changes in rat regenerat-
ing liver post PHx, finding 45 of them to be LR-associ-
ated. And the expression dynamics, patterns and actions 
of these genes in LR were primarily analyzed.

2  Materials and Methods
2.1  Regenerating liver preparation

Healthy SD rats weighing 200 – 250 g were obtained 
from the Animal Center of Henan Normal University. 
The rats were separated into two groups at random and 
each group included 6 rats (male:female = 1:1). PH was 
performed according to Higgins and Anderson[19], the left 
and middle lobes of liver were removed. Rats were killed 
by cervical vertebra dislocation at 0.5, 1, 2, 4, 6, 8, 12, 
16, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 96, 120, 144 and 
168 h after PH and the regenerating livers were observed 
at corresponding time point. The livers were rinsed three 
times in PBS at 4 °C, and then total 1 – 2 g livers (100 
– 200 mg livers from middle parts of right lobe of samples 
) were gathered and stored at – 80 °C. The sham-opera-
tion (SO) groups were the same procedure as PH groups 
except the liver lobes unresolved. The laws of animal pro-
tection of China were enforced strictly.

2.2  RNA isolation and purification
Total RNA was isolated from frozen livers according 

to the manual of Trizol reagent (Invitrogen Corporation, 
Carlsbad, California, USA)[20] and then purified base on 
the guide of RNeasy mini kit (Qiagen, Inc, Valencia, CA, 
USA)[21]. Total RNA samples were checked to exhibit a 
2:1 ratio of 28S rRNA to 18S rRNA intensities by agarose 
electrophoresis (180 V, 0.5 h). Total RNA concentration 
and purity were estimated by optical density measure-
ments at 260/280 nm[22].

2.3  cDNA, cRNA synthesis and purification
1 – 8 μg total RNA as template was used for cDNA 

synthesis. cDNA purification was based on the way es-
tablished by Affymetrix[23]. cRNA labeled with biotin was 

synthesized using cDNA as the template, and cDNA and 
cRNA were purified according to the purification proce-
dure of GeneChip Analysis[23]. Measurement of cDNA, 
cRNA concentration and purity were the same as above.

2.4  cRNA fragmentation and microarray detection
15 μl (1 μg/μl) cRNA incubated with 5 × fragmentation 

buffer at 94 °C for 35 min was digested into 35 – 200 bp 
fragments. The hybridization buffer prepared according 
to the way Affymetrix provided was added to the prehy-
bridized Rat Genome 230 2.0 microarray produced by 
Affymetrix, then hybridization was carried out at 45°C 
for 16 h on a rotary mixer at 60 rpm. The microarray was 
washed and stained by GeneChip fluidics station 450 (Af-
fymetrix Inc, Santa Clara, CA, USA). The chips were 
scanned by GeneChip Scan 3000 (Affymetrix Inc, Santa 
Clara, CA, USA), and the signal values of gene expres-
sion were observed[24].

2.5  Microarray data analysis
The normalized signal values, signal detections (P, A, 

M) and experiment/control (Ri) were obtained by quan-
tifying and normalizing the signal values using GCOS 
(GeneChip operating software) 1.2[24].

2.6  Normalisation of the microarray data
To minimize error from the microarray analysis, each 

analysis was performed three times. Results that a total 
ratio were maximal (Rm) and that the average of three 
housekeeping genes β-actin, hexokinase and glyseralde-
hyde-3-phosphate dehydrogenase approached 1.0 (Rh) 
were taken as a reference. The modified data were gener-
ated by applying a correction factor (Rm/Rh) multiplying 
the ratio of every gene in Rh at each time point. To remove 
spurious gene expression changes resulting from errors in 
the microarray analysis, the gene expression profiles at 0 
– 4 h, 6 – 12 h and 12 – 24 h after PH were reorganized 
by NAP (normalization analysis program) software ac-
cording to the cell cycle progression of the regenerating 
hepatocytes. Data statistics and cluster analysis were done 
using GeneMath, GeneSpring (Silicon Genetics, San Car-
los, CA), Microsoft Excel (Microsoft, Redmond, WA) 
software[24-26].

2.7  Identification of genes associated with LR
Firstly, the nomenclature of a biological process (e.g. 

toxic liver injury) was adopted from the GENEONTOL-
OGY database (www. geneontology. org), and inputted 
into the databases at NCBI ((www. ncbi. nlm. nih. gov/) 
and RGD (rgd. mcw. edu) to identify the rat, mouse and 
human genes associated with the specific biological pro-
cess. According to maps of biological pathways embod-
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ied by GENMAPP (www. genmapp. org), KEGG (www.
genome. jp/kegg/pathway.html# amino) and BIOCARTA 
(www. biocarta. com/genes/index. asp), the genes associ-
ated with the biological process were collated. The results 
of this analysis were codified, and compared with the re-
sults obtained for mouse and human searches in order to 
identify human genes which are different from those of rat. 
Comparing these genes with the analysis output of the Rat 
Genome 230 2.0 Array, those genes which showed more 
than twofold changes in expression level were referred to 
as rat homologous or rat specific genes associated with 
the biological process under evaluation. Genes, which 
displayed reproducible results with three independent 
analysis with the chip and which showed more than two-
fold change in expression level in at least one time point 
during LR with significant difference (0.01 ≤ P < 0.05) or 
extremely significant difference (P ≤ 0.01) between PH 
and SO, were referred to as associated with LR. 

3  Results
3.1  General statement of expression of the toxic liver 
injury-associated genes during LR

According to the data of databases at NCBI, GENE-
MAP, KEGG and BIOCARTA, 87 genes were associated 
with liver diseases. In which, 75 genes were contained 
in Rat Genome 230 2.0 Array. Among them, 45 genes 
revealed meaningful expression changes at least at a time 
point after PH, showed significant difference or extremely 
significant difference in expression when comparing PH 
with SO and displayed reproducible results with three de-
tection with Rat Genome 230 2.0 Array, suggesting that 
the genes were associated with LR. The analysis indicated 
that 21 genes were up-, 9 genes down-, and 15 genes up/
down-regulated during LR. The range of up-regulation 
was from 2 to 128 times higher than control, and that of 
down-regulation was 2 – 12 folds (Table 1).

3.2  Expression changes of the toxic liver injury-as-
sociated genes during LR

At each time point of LR, the numbers of initial up-, 
down-regulated and total up-, down-regulated gene were 
in sequence: both 13 and 6 at 0.5 h; 1, 3 and 13, 8 at 1 h; 4, 
0 and 14, 2 at 2 h; 3, 1 and 17, 4 at 4 h; 1, 0 and 14, 3 at 6 
h; 0, 0 and 12, 4 at 8 h; 0, 0 and 9, 6 at 12 h; 3, 1 and 10, 5 
at 16 h; 2, 3 and 14, 10 at 18 h; 0, 1 and 12, 9 at 24 h; 1, 0 
and 5, 3 at 30 h; 0, 0 and 5, 5 at 36 h; 1, 0 and 8, 4 at 42 h; 
0, 0 and 13, 5 at 48 h; 0, 0 and 8, 6 at 54 h; 0, 0 and 11, 4 at 
60 h; 0, 0 and 8, 2 at 66 h; 0, 0 and 9, 6 at 72 h; 0, 0 and 8, 
1 at 96 h; 1, 0 and 13, 2 at 120 h; 0, 0 and 10, 7 at 144 h; 0, 
0 and 10, 4 at 168 h. In the aspect of the initial expression 

of above 45 genes, 30 initially up-regulated genes and 15 
initially down-regulated were confirmed during LR, re-
spectively; at initial stage of LR (0.5 – 4 h after PH), G0/
G1 transition (4 – 6 h after PH), cell proliferation (6 – 66 
h after PH), cell differentiation and the structure-function 
reorganization (72 – 168 h after PH), the number of ini-
tially up and initially down-regulated genes were 21 and 
10, 4 and 1, 8 and 5, 1 and 0. The whole situation of genes 
expression was that the total frequencies of up and down-
regulated expression were 236 and 106 respectively; at 
the above-mentioned four phases of LR, that of up-regu-
lation and down-regulation was in sequence 57 and 20, 31 
and 7, 129 and 66, 50 and 20 (Figure 1).

3.3  Expression similarity and time relevance of the 
toxic liver injury-associated genes during LR

The 45 genes mentioned above during LR could be 
characterized based on their similarity in expression as 
follow: only up-, predominantly up-, only down-, pre-
dominantly down-, and up-/down-regulated, involved 
in 21, 8, 9, 5 and 2 genes, respectively (Figure 2). They 
could also be classified based on time relevance into 15 
groups including 0.5 and 1 h, 2 h, 4 and 6 h, 8 h, 12 h, 16 
h, 18 and 24 h, 30 and 42 h, 36 h, 48 h, 54 and 60 h, 66 
and 72 h, 96 h, 120 h, 144 and 168 h, in which the times 
of up-regulation and down-regulation of these genes were 
26 and 14, 14 and 2, 31 and 7, 12 and 4, 9 and 6, 10 and 5, 
26 and 19, 13 and 7, 5 and 5, 13 and 5, 19 and 10, 17 and 
8, 8 and 1, 13 and 2, 20 and 11, respectively (Figure 2). 

3.4  Expression patterns of the toxic liver injury-as-
sociated genes during LR

The 45 genes mentioned above during LR might be 
categorized according to the changes in expression into 
21 types of patterns: (1) up-regulation at one time point, 
i.e. 0.5, 30, 120 h after the rat partial hepatectomy (Fig-
ure 3A), 3 genes involved; (2) up-regulation at two time 
points, i.e. 16 and 96 h (Figure 3B), 1 gene involved; (3) 
up-regulation at three time points (Figure 3B), 1 gene in-
volved; (4) up-regulation at two phases, i.e. 16-24 and 42 
– 48 h(Figure 3C), 1 gene involved; (5) up-regulation at 
three phases (Figure 3C), 1 gene involved; (6) up-regula-
tion at one time point/phase, i.e. 42 – 48 and 96 h; 48 and 
2 – 24 h (Figure 3D), 2 genes involved; (7) up-regula-
tion at one time point/two phases (Figure 3E), 3 genes 
involved; (8) up-regulation at one time point/three phases 
(Figure 3F), 1 gene involved; (9) up-regulation at two 
time points/one phase (Figure 3F), 1 gene involved; (10) 
up-regulation at two time points/three phases (Figure 3G), 
1 gene involved; (11) up-regulation at three time points/
two phases (Figure 3H), 2 genes involved; (12) down-reg-
ulation at two time points, i.e. 1 and 168, 24and 144, 18 
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Table 1. Expression abundances of the 45 toxic liver injury-associated genes during rat LR

Gene 
Abbr.

In-
volved 

in 
others

Recovery time (h) after partial hepatectomy (PH)

0 0.5 1 2 4 6 8 12 16 18 24 30 36 42 48 54 60 66 72 96 120 144 168

1  Lipid metabolism and peroxidation
Abcb1 1 0.54 0.58 0.87 0.81 0.87 0.72 1.32 0.61 4.59 3.75 0.52 3.03 0.64 1.41 1.62 1.32 3.98 2.77 0.54 1.23 0.71 0.87

Cat 1 2.83 1.48 1.07 1.28 1.12 1.73 1.08 1.12 0.73 0.62 1.31 0.71 1.09 0.62 1.00 1.07 0.77 1.34 1.00 1.05 1.58 1.05
Fmo3 1 1.15 1.76 1.74 1.74 2.00 2.19 2.26 3.01 0.76 1.24 4.48 0.81 4.16 0.93 0.66 0.66 0.93 1.20 1.15 1.41 1.23 1.32
Lpin1 1 9.55 15.01 14.47 12.29 10.70 10.50 1.43 0.77 0.96 1.43 0.70 0.77 1.04 1.35 1.62 1.01 0.99 2.19 0.87 3.45 2.68 3.45
Nat2 1 1.00 1.89 1.07 2.30 1.32 1.09 1.41 0.99 3.25 4.02 1.29 1.07 1.04 3.48 2.83 3.25 2.63 1.70 1.41 3.48 1.74 2.46
Ace 1 0.80 0.48 1.29 0.88 1.39 0.82 1.14 1.16 1.00 0.88 0.93 1.18 1.03 1.18 1.03 1.39 0.56 0.71 0.78 0.75 0.56 0.47

ApoE 1 0.93 1.24 0.87 0.93 1.07 0.95 0.76 0.15 0.93 1.08 0.13 0.93 0.17 1.00 1.00 0.93 1.07 1.20 0.33 1.41 1.23 1.07
CD36 1 0.10 0.22 0.20 0.20 0.41 0.24 0.23 0.25 0.27 0.11 1.95 0.14 1.47 0.13 0.27 0.23 0.53 0.37 0.93 0.62 0.50 0.62

Cyp2d6 1 0.76 0.33 1.62 1.00 1.15 1.35 1.62 1.14 1.15 1.24 0.60 0.57 0.74 0.81 0.81 0.66 1.73 0.65 1.07 0.66 0.44 0.50
Hmgcr 1 0.35 0.88 0.90 0.24 0.25 0.37 0.48 1.09 0.81 0.28 0.72 0.65 1.08 0.28 0.73 0.67 1.03 0.67 0.85 0.88 0.90 0.75
Fmo1 1 2.46 2.86 2.00 1.87 0.71 0.67 0.44 0.42 0.38 0.54 0.97 1.52 1.37 0.66 1.07 1.23 1.86 1.83 1.32 2.64 1.62 1.87
Hao1 1 1.41 2.32 0.93 1.15 0.81 0.72 0.47 0.61 1.23 1.42 0.74 1.07 0.79 1.07 1.41 1.32 1.86 1.96 1.23 1.74 2.00 1.74

2  Other metabolism
Aldoa 1 1.07 1.08 1.07 1.00 1.74 1.66 1.41 1.98 1.23 1.75 0.91 1.41 2.08 2.14 1.15 1.23 1.62 1.20 3.48 1.15 1.07 1.00
Aldob 1 1.00 1.24 0.93 0.76 0.81 0.63 0.71 1.22 0.87 1.08 2.40 0.87 1.94 0.93 0.93 0.81 1.14 1.20 1.52 1.15 1.07 0.93
Ccl2 3 1 7.46 2.67 1.62 1.62 1.23 1.09 5.66 8.12 10.56 18.47 1.20 14.93 1.20 1.28 4.92 8.57 4.58 2.77 1.15 2.46 0.57 0.66

Fbp1 1 0.93 1.24 0.87 1.07 1.07 1.09 0.81 3.01 1.00 1.15 1.38 0.87 1.81 0.81 1.15 1.07 1.31 1.20 2.00 1.15 1.07 1.00

Got1 1 3.73 5.72 6.06 6.96 12.13 12.37 3.48 2.84 2.30 3.50 1.20 2.30 1.04 2.00 1.74 2.83 3.24 2.96 1.00 4.29 3.73 3.73
Pck1 1 2.14 3.07 1.87 1.74 1.74 2.04 1.15 1.40 1.62 2.01 1.12 1.23 1.12 1.23 1.87 1.41 2.13 2.41 1.32 3.25 2.30 2.14
Pklr 1 3.51 3.16 3.46 6.59 4.66 0.79 1.13 1.01 2.20 2.49 1.08 0.51 1.09 1.37 1.22 0.77 0.84 1.22 1.00 0.81 2.80 3.17
Ttr 1 0.93 1.24 0.87 0.93 1.07 0.95 0.71 6.91 0.87 0.94 2.76 0.93 1.94 1.00 0.93 1.00 1.14 1.38 3.48 1.52 1.23 1.07

Irs1 1 1.41 1.16 1.74 1.74 1.74 1.35 1.23 0.93 0.87 0.44 1.70 1.07 0.97 0.87 0.71 1.23 1.07 0.85 1.07 0.87 0.50 0.81
Ca5b 1 3.01 2.05 2.15 2.38 1.51 1.64 1.75 0.57 2.30 1.39 0.37 1.42 0.64 2.32 2.47 3.65 1.93 1.19 0.63 2.83 1.93 1.68

Mapk8 3 1 7.46 3.07 12.20 19.70 4.29 5.77 4.92 2.28 3.73 5.68 1.70 1.74 0.49 3.03 4.59 2.00 1.41 5.53 0.93 1.74 5.66 0.66
Mmp9 1 2.05 2.16 2.10 2.07 1.37 2.81 2.75 2.13 1.12 1.58 1.27 1.83 5.89 1.00 1.20 1.15 1.16 1.21 9.54 2.22 0.48 2.03
Mthfr 1 0.47 0.44 1.87 3.25 2.64 3.19 3.73 1.50 0.50 0.38 1.48 0.66 1.69 0.66 0.71 0.87 0.46 0.40 2.00 0.57 0.66 0.50
Plau 3 1 1.50 1.36 2.10 2.19 2.47 1.72 1.68 1.07 1.51 1.18 0.68 1.19 0.36 1.31 1.34 1.54 3.00 1.40 0.53 1.89 2.08 2.19

Ptpn1 1 0.77 0.88 0.93 2.15 1.46 1.60 0.26 1.45 0.73 1.16 2.88 0.81 2.79 1.01 1.06 1.07 1.23 1.13 1.48 1.07 1.23 1.04
Scnn1g 1 1.10 0.39 1.43 1.51 2.03 1.47 1.44 1.17 0.38 0.52 1.60 1.16 2.14 0.56 1.19 1.17 0.64 0.79 1.28 1.34 1.25 0.741

3  Regulation of cell proliferation, apoptosis and cell necrosis
Ca3 1 11.46 13.96 5.96 8.63 6.89 4.40 1.37 0.74 3.24 1.75 0.68 1.52 0.62 1.06 4.41 3.19 1.37 6.50 0.97 10.39 12.85 9.99
Cav 1 2.46 2.55 2.64 3.73 5.28 2.04 3.48 2.62 4.00 4.02 1.48 6.50 1.20 10.56 1.41 9.19 4.90 4.19 0.81 4.29 2.14 2.46
Ccl2 2 1 7.46 2.67 1.62 1.62 1.23 1.09 5.66 8.12 10.56 18.47 1.20 14.93 1.20 1.28 4.92 8.57 4.58 2.77 1.15 2.46 0.57 0.66
Egr1 1 17.15 18.59 13.93 2.30 2.00 2.68 3.48 0.86 1.62 2.84 0.64 3.03 0.56 2.83 3.25 3.73 4.58 2.25 0.66 3.03 1.00 0.93
Esr1 1 1.07 0.62 3.48 4.92 4.92 1.17 1.41 1.31 2.14 1.08 1.29 1.23 1.37 1.74 2.64 4.29 1.51 1.48 1.23 4.59 6.06 2.30
IL1rn 1 1.87 1.43 2.83 8.00 14.93 16.32 2.46 2.63 3.03 3.75 1.48 0.81 1.58 2.83 0.93 1.00 0.81 0.79 1.41 0.71 0.76 0.81

Tgfb1 1 0.87 0.51 1.15 1.15 1.07 1.02 1.15 2.13 3.71 4.02 1.82 1.23 2.75 2.14 0.93 1.15 1.62 0.74 1.41 0.93 0.76 0.87

Tnf 1 0.87 0.62 1.23 1.41 1.15 1.17 0.93 0.93 0.71 0.66 0.79 1.41 0.85 1.62 1.07 1.15 0.93 0.52 1.23 3.25 0.81 0.71

Tp53 1 0.85 1.50 0.96 0.89 0.93 1.74 1.32 0.91 2.40 2.87 0.85 1.38 1.00 2.26 2.22 2.05 1.97 1.76 2.01 1.11 1.23 1.07

Bcl2 1 0.82 0.64 1.12 1.00 1.19 1.17 1.15 0.85 0.33 0.37 1.80 0.32 0.79 0.44 0.39 0.46 0.81 0.38 0.84 0.50 0.68 0.64

IL1b 1 1.00 1.01 0.87 0.93 1.32 0.63 1.07 0.81 0.35 0.82 0.74 0.81 1.04 1.15 0.47 0.54 1.41 0.79 1.87 0.66 0.76 0.76

Prf1 1 0.50 0.22 0.34 0.50 1.07 0.36 0.57 0.81 0.33 0.25 0.97 0.87 0.97 1.23 0.41 0.38 0.57 0.26 0.81 1.15 0.27 1.07

Edn1 1 1.23 0.62 1.62 1.07 1.32 1.09 1.23 0.71 0.41 0.38 2.57 1.00 1.47 1.00 0.71 1.32 0.75 0.69 1.32 0.81 0.71 0.71

IL6 1 1.87 1.08 3.25 3.25 3.03 3.81 1.32 0.99 3.25 1.87 0.91 0.50 1.28 2.83 1.87 2.30 0.87 0.28 6.06 0.81 1.52 0.93

Mapk8 2 1 7.46 3.07 12.20 19.70 4.29 5.77 4.92 2.28 3.73 5.68 1.70 1.74 0.49 3.03 4.59 2.00 1.41 5.53 0.93 1.74 5.66 0.66

Osmr 1 0.25 0.10 0.71 0.62 1.62 1.09 1.23 0.28 1.23 0.94 0.17 0.81 0.18 2.46 0.66 0.81 1.31 0.60 0.87 0.50 0.25 0.29

Plau 2 1 1.50 1.36 2.10 2.19 2.47 1.72 1.68 1.07 1.51 1.18 0.68 1.19 0.36 1.31 1.34 1.54 3.00 1.40 0.53 1.89 2.08 2.19
Retn 1 0.44 0.36 0.87 1.15 1.07 1.44 0.54 1.40 0.71 0.29 0.74 0.33 2.23 0.44 0.29 0.57 0.20 0.28 1.23 0.18 0.29 0.76

Spp1 1 1.14 1.45 1.19 2.68 0.89 1.09 1.16 0.91 0.47 0.94 0.88 0.85 0.97 0.66 0.64 0.69 0.82 0.77 0.91 0.57 0.99 0.76

Vegfa 1 0.54 0.88 0.66 0.13 0.38 0.41 0.44 0.38 0.20 0.47 1.12 0.22 4.46 0.22 0.08 0.09 0.81 0.69 4.29 1.00 1.00 1.23

1: Lipid metabolism and peroxidation; 2: Other metabolisms; 3: Regulation of cell proliferation, apoptosis and cell necrosis; Bold  italic: the genes up-
regulated 2-fold or more at some time points in LR; Italic: the genes down-regulated 2-fold or more at some time points in LR.

and 54 h (Figure 3I), 3 genes involved; (13) down-regula-
tion at three time points (Figure 3J), 1 gene involved; (14) 
down-regulation at one time point/one phase, i.e. 1 and 
144-168 h (Figure 3J), 1 gene involved; (15) down-regu-

lation at two time points/two phases (Figure 3J), 1 gene 
involved; (16) down-regulation at three time points /one 
phase (Figure 3K), 1 gene involved; (17) down-regula-
tion at three time points /two phases (Figure 3K), 1 gene 
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Figure 1. The initial and total expression profiles of the 45 toxic liver injury-associated genes at each time point of LR. Blank bars: Initial 
expressing gene number; Dotted bars: Total expressing gene number; Grey bars: Up-regulated genes; White bars: Down-regulated genes. 
Expression change of the genes spans the whole live regeneration. Initially up-regulated genes are predominate at 0.5 – 6, 16 – 18, 30, 42 
and 120 h after PH; initially down-regulated genes are overwhelm at 0.5 – 1, 4, 16 – 24 h; there are no initially expressed genes at 8 – 12, 
36, 48 – 96, 144 – 168 h.

Figure 2. Expression similarity and time relevance clusters of the 45 toxic liver injury-associated genes during LR. Red: Up-regulation 
genes; Green: Down-regulation; Black: No-sense in expression change; The upper and right trees respectively show expression similarity 
cluster and time relevance cluster.
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involved; (18) down-regulation at three time points /three 
phases (Figure 3K), 1 gene involved; (19) first up- and 
then down-regulated (Figure 3L), 1 gene involved; (20) 
first down- and then up-regulated (Figure 3L), 1 gene 
involved; (21) up/down-regulated mixed (Figure 3M1 
– M2), 13 genes involved.

4  Discussion 

This paper mainly addresses the roles of toxic liver in-
jury-associated genes in rat LR. It has been known that 
lipid metabolism disorder and oxidative stress induced by 
hepatotoxin metabolites are the primary intrinsic causes 
of toxic liver damage. Interestingly, as demonstrated in 
Table 1, some pathogenesis-associated genes, such as the 
drug or hepatotoxin metabolism-involved genes abcb1, 
nat2, fmo1, fmo3 and cyp2d6[28-31], the lipid metabolism-

related genes lpin1[21], apoe[22], cd36[23] and hmgcr[24], as 
well as the lipid peroxidation-participating genes ace[25], 
hao1[26] and cat[27], exhibited the meaningful expression 
changes after PH. And the chip detection displayed that 
above 5 drug or hepatotoxin metabolism-involved genes 
(that’s abcb1, nat2, fmo1, fmo3 and cyp2d6) were domi-
nantly up-regulated between 18 and 120 h, suggesting that 
the metabolic process is most likely to be increased dur-
ing this period. In addition, there had been preceding an 
extremely significant and sustained up-regulation (> 10 
folds) of lipid oxidation and degradation-associated lpin1 
from 0.5 – 8 h, implying that it is key to lipid degratation 
in early phase of rat LR.

What’s more, metabolites of drug or toxin also directly 
affect the cell physiological and biochemical processes. 
For example, the intracellular oxidative stress can lead 
to apoptotic, necrotic cell death, or even cell prolifera-
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Figure 3. Expression patterns of the 45 toxic liver injury-associated genes during LR. These genes exhibit 21 types of expression patterns. 
A – H: Up-regulation in expression; L – K: Down-regulation; L – M: Up-/down-regulation mixed. X-axis represents recovery time after PH 
(h), Y-axis shows logarithm ratio of the signal values of genes at each time point to control.

tion, depending on the balance of factors that activate 
and inhibit apoptotic/proliferation-related proteins, such 
as the bcl2 family of proteins and the caspases, which 
determines the final total liver cell numbers. Table 1 
showed that among the genes encoding these proteins, 
seven genes il1b, il6, osmr, cav, tp53, tgfb1 and tnf all 
have the capacity of preventing hepatocyte cell prolifera-
tion[32-36] and inducing apoptosis[37]. The expression level 
of them were elevated mainly at 16 – 24, 48 and 60 h post  
PH [38,39], meanwhile, edn1, supporting cell proliferation 
by mediating G-protein coupled receptor protein sig-
naling pathway[40], was decreased in mRNA level at 18 
– 24 h, which is likely that they can hold down overpro-
liferation of the cell at corresponding stages during LR. 
Whereas the genes ca3, bcl2, vegfa and spp1 are capable 
of inhibiting cell apoptosis[41-44]. According to the micro-
array data, the expression of above four genes were strik-
ingly down-regulated at the same period as previously 
mentioned, perhaps helpful for cell reproduction. Taken 
together, the above genes regulate the balance between 
cell proliferation and apoptosis together. Among the ne-
crosis-involved genes, prf1 positively regulates necrotic 
cell death via cytolysis[45] and was down regulated almost 
during the whole LR; spp1and retn[44] also may protect 
against necrosis via respectively inhibiting fibrosis and 
massive adipocyte differentiation[46], and expression of 
the two genes were decreased in LR, which demonstrated 
they may co-modulate hepatecyte necrotic death caused 

by metabolism turbulence. Among them, cav expression 
was increased almost during the whole LR, reaching its 
peak abundance with 10.6 times higher than control at 48 
h; ca3 exhibited the persistent high expression level at 0.5 
– 8 h and arrived at a peak of 14-fold of control at 1 h post 
PHx. It was presumable that the two genes are important 
in regulating the balance between cell proliferation and 
apoptosis during rat LR. 

To sum up, expression changes of the toxic liver in-
jury-related genes after rat PH were detected with high-
throughput gene expression analysis at transcriptional 
level, and found there were 27 up-regulated genes, 9 
down-regulated and 15 up/down-regulated in LR. These 
genes together play the role in cell metabolism (e.g. lipid 
degradation), cell proliferation and apoptosis so that they 
contribute to liver regenerative progress. And the above 
results need to be further analyzed with the techniques, 
such as Northern blotting, protein chip, RNA interfer-
ence, protein-interaction etc.
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