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Abstract: Essential physics associated with the conformational behavior of a linear semiflexible homopolymer chain have 
been derived from a model of directed self avoiding walk (DSAW) on a two dimensional rectangular lattice. The DSAW 
model has been solved analytically to study phase transitions occurring in the polymer chain and exact values of 
conformational properties and transition points have been reported. We have analyzed the variation of critical value of step 
fugacity and persistent length with bending energy of the semiflexible polymer chain for a case when the chain is in the 
bulk. In presence of an attractive impenetrable surface, variation of critical value of monomer-surface attraction with 
bending energy of the polymer chain shows that adsorption of a stiff chain takes place at a smaller value of monomer 
surface attraction than a flexible chain. We have compared the results so obtained for a two dimensional rectangular lattice 
case to the corresponding results obtained using square lattice and found that qualitative nature of phase diagrams are 
similar in the case of both the lattices. [New York Science Journal. 2009;x(x):xx-xx]. (ISSN: 1554-0200). 
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1. Introduction 
    Biopolymers (e. g. DNA, protein) are known to be 
semiflexible polymer chains. The conformational 
properties of such chains have attracted considerable 
attention in recent years because of new developments in 
experimental techniques in which it has become possible 
to pull and stretch single Biopolymer to measure its 
elastic properties (Bustamante et al. 2000; Shivashankar 
et al. 1997). These studies will reveal a wealth of 
information about the conformational behavior of 
Biopolymers and of clear Biological importance.  
    The essential physics associated with the 
conformational behavior of a semiflexible polymer chain 
in the bulk and in presence of an attractive impenetrable 
surface can be derived in the lattice model from a model 
of self avoiding walk (SAW) or directed self avoiding 
walk (DSAW) on a suitable lattice (Privman and Svrakic, 
1989; Mishra et al., 2003, Giri et al., 2003; Mishra, 
2009). The analytical solutions for semiflexible polymer 
chain are limited to DSAW models (Privman and 
Svrakic, 1989; Mishra et al., 2003 and Mishra, 2009a, 
2009b) and WLC (worm like chain) model (Kratky and 
Porod, 1949). The WLC model has been used extensively 
to study conformational properties of a semiflexible 
polymer chain and it can not mimic exactly the 
dimensional behavior of semiflexible polymer chain 
(Semjon, 2001). On the other hand DSAW models are 
analytically solvable, simple to report quantitative 
behavior and provides clear picture of the phase diagram 
of a semiflexible polymer chain in the bulk and in 
presence of an attractive impenetrable surface.  
    Lattice models are useful in analyzing the 
modifications in the conformational properties of the 
polymer chain when it is near an attractive impenetrable 

surface (Eisenriegler, 1993; Singh et al. 1999; 2000 and 
references therein). Since, impenetrable attractive surface 
introduces constrain on the polymer chain and therefore 
reduces its entropy and due to attractive interaction 
between monomer of the polymer chain and the surface, 
the polymer chain gains internal energy. A competition 
between the gain in internal energy and corresponding 
loss of entropy of the polymer chain is responsible for 
adsorption-desorption transition. This phenomenon of 
adsorption-desorption transition finds applications in 
lubrication, adhesion and surface protection.  
    In the past few years much attention have been paid to 
the study of conformational properties of a linear 
semiflexible polymer chain on square and cubic lattices 
using SAW and DSAW models (Privman and Svrakic, 
1989; Mishra et al., 2003; Giri et al., 2003 and references 
therein). Since, stiffness of the polymer chain controls 
bending of the chain and therefore modifies its 
conformational properties. This is to be noted that the 
universal features of a surface interacting polymer chain 
and qualitative nature of phase diagram will remain 
independent of the type of lattice (square, hexagonal or 
rectangular lattice in two dimension) chosen to model the 
polymer chain. 
    In the present communication we have extended the 
idea of DSAW model to a two dimensional rectangular 
lattice derived from a hexagonal lattice and solved the 
model analytically to study conformational changes in a 
linear semiflexible homopolymer chain in the bulk and in 
presence of an attractive impenetrable surface. The 
results so obtained have been compared with the 
corresponding results found using square lattice (Mishra 
et al., 2003) for the sake of completion. 
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2. Model and method 
     We define stiffness weight 

)/exp( Tkk Bb where, )0(b is the energy 

required to introduce one bend in the polymer chain, Bk  
is Boltzmann constant and T is temperature. If polymer 
chain is flexible ( 1k or 0b ), the persistent 
length is very small in comparison to actual length of the 
polymer chain and if the polymer chain is stiff 
( 0k or b ) the persistent length is of the order 
of the polymer chain length. However, if 

10  k or  b0 , the polymer chain is known 
as a semiflexible polymer. 
    In the case of directed self avoiding walk model on a 
two dimensional rectangular lattice all the directions in 
space are not treated equally by the walker therefore 
model introduces stiffness in the polymer chain and angle 
of bending of the polymer chain is 900 for all the bends 
therefore model is restrictive. However, directed self 
avoiding model is exactly solvable therefore gives exact 
value of conformational properties, transition points and 
clear picture of phase diagram. In a case, when polymer 
chain is directed along +y direction, i. e. walker can take 
steps along ±x and +y directions, corresponds to the case 
of partially directed self avoiding walk (PDSAW) model. 
Another case, in which walker is directed along +x as 
well as +y direction, i. e. walker can not walk along -x 
and -y directions, model is known as fully directed self 
avoiding walk (FDSAW) model. We have taken lattice 
parameter 2:1 along x:y directions respectively for the 
two dimensional rectangular lattice which is derived 
from a hexagonal lattice. 

    The grand canonical partition function of a 
semiflexible polymer chain can be written as, 

)1(),(
0

 





N

N stepsNofwalksAll

NN bkxkxZ  

    In Eq. (1) bN is the number of bends in a walk 

of N monomers (steps), x is the step fugacity associated 
with each monomer of the polymer chain and k is 
stiffness of the chain. We define X as the sum of 
Boltzmann weight of all the walks whose first step is 
along any of the ±x directions and Y is sum of 
Boltzmann weight of all the walks with first step along 
+y direction. 
2. 1(a) PDSAW model 
    The generating function for PDSAW model on a two 
dimensional rectangular lattice (derived from a 
hexagonal lattice) can be written (as shown graphically in 
Fig. 1B) and solved to evaluate partition function, 

),( kxZPD of the linear semiflexible homopolymer chain 
as follows.  
 

 
 
Fig. (1A) Rectangular lattice derived from a hexagonal 
lattice. 

 
[Fig. (1B) Recursion relations for PDSAW model are shown diagrammatically for a long linear semiflexible homopolymer 
chain on a rectangular lattice in two dimension. In the PDSAW model walks of the polymer chain are directed along +y 
direction. Step fugacity of each step is shown by x, k is stiffness associated with each bend of the polymer chain, X shows 
sum of Boltzmann weight of all the walks whose first step is along any of the directions ±x and Y shows sum of Boltzmann 
weight of all the walks having first step along +y direction.] 
 
Components of recursion relations have been written 
according Fig. (1B) and solved for partition function 

),( kxZPD  of the polymer chain as follows: 
 
 

)2()(22 kYXxxxX   

)3(222 2222 YkxkXxkxxY   
Eqs. (2) and (3) can be solved for X and Y, 
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Therefore, partition function ),( kxZPD for PDSAW model can be written as, 

)5(
21

)44223(2),( 222

233322

kxx
kxkxxkxxxYXkxZPD 


  

    The partition function ),( kxZPD of the polymer chain 
diverges for,  

)6(21 222 kxx 
    From Eq. (6) we obtain critical value of step fugacity 
for polymerization of an infinitely long linear 
semiflexible polymer chain and it can be written in terms 

of stiffness as )21/(1 2kxc  . 
    However, critical value of step fugacity for PDSAW 
model on a square lattice in terms of stiffness of the 

chain is written as )21/(1 kxc  (Mishra et al., 
2003). The dependency of step fugacity of a semiflexible 
polymer chain on its bending energy for PDSAW model 
is shown in Fig. (2) by up-triangle for a rectangular 
lattice and by star for a square lattice.  
    The persistent length ( pl ) defined by Mishra et al., 
(2003) can be calculated for PDSAW model of 
semiflexible polymer chain for the rectangular lattice and 

it can be written as 2)2/1(1  klp . Variation of 
persistent length with bending energy of the linear 
polymer chain for PDSAW model is shown in Fig. (3) by 
up-triangle for the rectangular lattice and by star for 
square lattice. 
2. 1(b) FDSAW model 
    The recursion relations for generating functions of 
FDSAW model on a two dimensional rectangular lattice 
can be written according to the method outlined above 
and easily solved for calculation of partition function of 
the semiflexible polymer chain as follows: 

)7()(22 kYXxxxX   

)8()(22 kYXkxkxxY   
On solving Eqs. (7) and (8) for X and Y, we find values 
of X and Y to calculate partition function ),( kxZ FD as 
follows, 

)9(
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1

)1(
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kxx
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Thus, partition function ),( kxZFD for FDSAW model is, 

)10(
1

22),( 222

233322

kxx
kxkxxkxxxYXkxZFD 


  

 
    The critical value of step fugacity for polymerization 
of an infinitely long linear semiflexible chain can be 
obtained from singularity of ),( kxZFD , i. e., 
  

)11(01 222  kxx  
 
    Thus, in this case critical value of step 

fugacity 211 kxc  , its variation with bending 
energy of the polymer chain is shown in Fig. (2) by 
down-triangle for rectangular lattice. For a square lattice 

])1(1[ kxc   (Mishra et al., 2003) have been shown 
in Fig. (2) by plus symbol for FDSAW model to compare 
the results for different values of bending of the polymer   
chain.  
    The value of persistent length of the semiflexible 
polymer chain for FDSAW model on the rectangular 
lattice ( 21  klp ) has been shown for different 
values of bending energy of the polymer chain in Fig (3) 
by down-triangle and by plus symbol for square lattice 
( 11  klp ) (Mishra et al., 2003). 
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[Fig. (2) Variation of critical value of step fugacity for 
polymerization of an infinitely long linear semiflexible 
polymer chain has been shown for various values of 
bending energy of the polymer chain for PDSAW and 
FDSAW models on a two dimensional rectangular lattice 
and square lattice.]  

 
[Fig. (3) Variation of persistent length of an infinitely 
long linear semiflexible polymer chain has been shown 
for various values of bending energy of the polymer 
chain for PDSAW and FDSAW models on a rectangular 
lattice and square lattice in two dimension.]  

 
2.2 Adsorption properties 
    In presence of an attractive impenetrable surface, 
conformational properties of the semiflexible polymer 
chain get modified due to constrain imposed by surface 
and attractive interaction of monomer of the chain with 
the surface. The attractive surface contributes an excess 
energy )0(s for each step of the walk lying on the 
surface and thus leads to an increased probability, 
characterized by the Boltzmann weight )( se   , of 
making a step on the surface. Impenetrable surface 
constrains the polymer chain and therefore, reduces its 
entropy. The polymer chain may move away from the 
surface to increase its entropy and desorbed state will 
prevail. However, if polymer chain and surface attraction 
wins over the loss of entropy of the chain due to 
constrain imposed on the polymer chain by the 
impenetrable attractive surface, most of the parts of chain 
get attached to the surface and adsorbed state will 
prevail. Thus, transition between adsorbed and desorbed 

regimes is marked by a critical value of or monomer 
surface attraction energy.  
    In this section, PDSAW and FDSAW models for a two 
dimensional rectangular lattice have been solved for an 
infinitely long linear semiflexible chain in the presence 
of an attractive impenetrable surface (i. e. a line y=0 for 
two dimensional space) and results obtained have been 
compared with corresponding results found using a 
square lattice. 
 
 2.2 (a) PDSAW model 
    We report the results found from analytical calculation 
for the adsorption of a directed semiflexible polymer 
chain on a surface. For a two dimensional space surface 
is a line. Let S be the component of generating function 
along the surface. Following the method outlined above, 
we can write generating function for surface interacting 
chain, as written in eq. (12). 
    Surface component of recursion relation for PDSAW 
model can be written using Fig. (4) as, 

 

)12()1()......1()1()1( 53  sskYssskYssskYssS  
 
    Where, )( xs  is the weight associated with each 
step (monomer) lying on the surface. Above series can be 
summed for s < 1, such that, 

 

[Fig. (4) Recursion relation for an infinitely long linear 
semiflexible polymer chain interacting with an attractive 
impenetrable surface is shown diagrammatically for a 
two dimensional rectangular lattice. Surface is a line and 
shown by y=0. All the walks starts from a point O lying 
on the surface and S represents sum of Boltzmann weight 
of all the walks whose first step is on the surface. Y is the 
component of generating function perpendicular to the 
surface.]    
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    The partition function, ),,( xkZ s
PD  of the surface 

interacting semiflexible polymer chain is written as, 

)13()1(2),,(  sYSxkZ s
PD   

We have taken value of Y from eq. (4), thus, 

 

)14()1(
)21)(1(

)221)(21()21)(1(2),,( 2222

2222222





 s

kxxs
kxxxkkssxkxxssxkZ s

PD   

 
    
For adsorption of an infinitely long linear semiflexible 
homopolymer chain on a surface perpendicular to the 
direction of directedness of walks has been found and its 
value in terms of stiffness can be written 

as 221 kc  . This value of c has been obtained 

from singularities of Eq. (14). The variation of c for the 
semiflexible polymer chain with bending energy of the 
chain is shown in Fig. (5) by up-triangle for PDSAW 
model on a rectangular lattice. The value of 

12  kc  (Mishra et al., 2003) for square lattice 
in the case of PDSAW model and its variation is shown 

in Fig. (5) by star for different values of bending energy 
of the polymer chain. 
 
2.2 (b) FDSAW model 
    In the case of FDSAW model the component of 
generating function along surface has same expression as 
we have obtained for PDSAW model. Therefore, 
partition function of the polymer chain for this 

model ),,( xkZ s
FD   can be written as, 

)15()1(),,(  sYSxkZ s
FD   

 

)16()1(
)1)(1(

)1)(1()1)(1(),,( 2222

2222222





 s

kxxs
kxxxkkssxkxxssxkZ s

FD   

 
In above Eq. (15) we have used value of Y from Eq. (9). 

The singularities of ),,( xkZ s
FD   gives critical value 

of   for adsorption of the semiflexible polymer chain 

as, 21 kc   and its variation with bending energy 
of the semiflexible polymer chain is shown by down-

triangle in Fig. (5) for FDSAW model on a rectangular 
lattice. However, in the case of a square lattice for 
FDSAW model kc 1 and its variation with 
bending energy of the polymer chain is shown in Fig. (5) 
by plus symbol. 

 
 
 

 
[Fig. (5) The variation of c for adsorption of an infinitely long linear semiflexible polymer chain on an attractive 
impenetrable surface has been shown with bending energy of the chain for PDSAW and FDSAW models on a two 
dimensional rectangular lattice and square lattice.] 
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3. Result and discussion 
     We have solved PDSAW and FDSAW models for a 
linear semiflexible homopolymer chain on a two 
dimensional rectangular lattice and calculated exact value 
of step fugacity for polymerization of an infinitely long 
semiflexible chain. The variation of step fugacity and 
persistent length of the semiflexible polymer chain with 
its bending energy have been shown for directed walk 
models. The critical value of step fugacity for a flexible 
polymer chain is found to be 0.577.. and 0.707.. for 
PDSAW and FDSAW models respectively for the case of 
rectangular lattice. Persistent length of a flexible chain 
has value 1.5 for PDSAW model and 2 for FDSAW 
model on rectangular lattice. We have been able to obtain 
critical value of  for adsorption of an infinitely long 
linear semiflexible polymer chain on a surface 
perpendicular to the direction along which chain is 
directed. The critical value of   for surface adsorption 
for a flexible chain is 732.1c in the case of 
PDSAW model and 1.414.. for FDSAW model on a two 

dimensional rectangular lattice. Our study also showed 
that the adsorption of a stiffer chain takes place at a 
smaller value of c than a flexible chain (Sintes, 2001 
and Mishra et al., 2003, Mishra, 2009a, b). We have 
compared the results of critical value of step fugacity, 
persistent length and c obtained for PDSAW and 
FDSAW models on rectangular lattice with their 
corresponding results obtained using a square lattice. In 
the case of square lattice surface is a line (x=0) and walks 
are directed perpendicular to the surface. It has been 
found that qualitative nature of phase diagrams are 
similar for the rectangular and square lattice for both 
PDSAW and FDSAW models. 
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