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Abstract: 
 In this paper, a steady, incompressible creeping flow past a sphere is calculated using direct boundary 
element method (DBEM). The surface of the sphere is discretized into quadrilateral elements over which 
the velocity distribution is calculated. The computed results are compared with analytical results. It is found 
that both these results are in good agreement. 
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Introduction 
 In recent past, the well-known 
computational methods such as finite difference 
method (FDM), finite element method (FEM) 
and boundary element method (BEM) have been 
applied for the  flow field calculations around 
objects and in such methods, the whole region of 
flow field is discretised. Whereas in boundary 
element method only the surface of the body 
under consideration is discretized into different 
types of boundary elements (C.A.Brebbia & 
S.Walker,1980). BEM is well–suited to two-and 
three-dimensional problems for which finite 
elements are not suitable or insufficient, 
especially for problems where domain is exterior 
to the boundary, as in the case of flow past 
bodies. The most important features of BEM are 
the much smaller system of equations and 
considerable reduction in data, which are 
essential to run a computer program efficiently. 
That is why; BEM is more accurate, efficient and 
economical than other competitive 
computational methods. Boundary element 
methods are further classified into direct and 
indirect methods. In present paper, DBEM is 
applied to calculate creeping flow past a sphere. 
The study of flow past a sphere is of great 
practical importance in fluid dynamics. In 
creeping flow, the inertial effects become very 
small, whereas, the viscous effects become 
dominant. Therefore, the steady flow Navier-
Stokes’ equations are greatly simplified by 
neglecting the inertia terms (J.F. Dougles, J.. 
Gasiorek & J. A. Swaffield,1990). The direct 
boundary element method (DBEM) for potential 

flow calculations around  objects was applied 
first in the past by Morino (1975). In recent past, 
the direct element method has been applied by 
the author for flow field calculations around two- 
and three-dimensional bodies. 

Mathematical Formulation of Steady 
and Incompressible Creeping Flow 
 The differential equations governing the  
creeping flow are the continuity equation and the 
Navier – Stokes’ equations  

 ∇ . V  =  0 (1) 
and 

∂ V
∂ t  + ( V . ∇ ) V = – 

1
ρ ∇ p + v ∇ 2 V   (2) 

In the case of very creeping motion or in the case 
of very highly viscous fluid , the Reynold’s 
number will be small  ( Re << 1 ) .  In such cases 
the inertia term or convective acceleration term  

( V . ∇ ) V is approximately zero. Thus 
equations (1) and (2) reduce to 

 ∇ . V  =  0 (3) 
and 

 
∂ V
∂ t   =  – 

1
ρ ∇ p + v ∇ 2 V   (4) 

These equations are known as Stokes’ equations 
for very creeping motion .  Flows which satisfy 
equation (4) are called creeping flows . 
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Equation (4) represents the following three scalar 
equations . 

 




∂ u

∂ t   =  – 
1
ρ  

∂ p
∂ x + v ∇ 2 u

 

∂ v
∂ t   =  – 

1
ρ  

∂ p
∂ y + v ∇ 2 v

 

∂ w
∂ t   =  – 

1
ρ  

∂ p
∂ z + v ∇ 2 w

    (5) 

These equations together with the continuity 
equation (1) represent four scalar equations in 
four unknown  u  , v , w ,  and  p .  The great 
simplification in Stokes’ equations is that these 
equations are now linear .  In the case of steady 
flow , Stokes’ equation (4) reduces to 

 ∇ p  =  µ ∇ 2 V  (6) 
Equation (6) can be written in scalar form as 

 






∂ p
∂ x  =  µ ∇ 2 u

 

∂ p
∂ y  =  µ ∇ 2 v

 

∂ p
∂ z  =  µ ∇ 2 w

    (7) 

 The Stokes’ equations are considerably 
simple from mathematical point of view as they 
are linear differential equations .  Moreover , 
their order remain the same as that of full Navier 
– Stokes’ equations so that as many boundary 
conditions may be satisfied with the Stokes’ 
equations as with the full Navier – Stokes’ 
equations . 
 The Navier-Stoke equations for creeping 
incompressible viscous flow in the absence of 
body force is as follows: 

 
∂ V
∂ t   =  – 

1
ρ ∇ p + v ∇ 2 V   (8) 

To obtain the equation governing the pressure , 
take the divergence of both sides of equation (8), 
we get 

 ∇ . ∂ V
∂ t   =  – 

1
ρ ∇ . ∇ p + v ∇ . ∇ 2 V   (9) 

or 
∂
∂ t ( ∇ . V )  =  – 

1
ρ ∇ 2 p + v ∇ 2 ( ∇ . V )  

  (10) 

Using continuity equation (1) , equation (10) 
becomes 
 ∇ 2 p  =  0 (11) 
i.e.  for very slow motion the pressure  p  
satisfies Laplace’s equation and is therefore a 
harmonic function . 

 Steady Creeping Flow Past a 
Sphere  
 This problem was first solved by Stokes’ 
and is often referred to as Stokes’ flow or 
Stokes’ law . Stoke was the first who 
analytically solved the problem of creeping flow. 
 Let a solid sphere of radius  ‘a’ be held fixed 
in a uniform stream U flowing steadily in the 
positive direction of the z – axis.  Let the centre 
of the sphere be the origin of the coordinate 
system. Let z – axis be in the direction of the 
uniform stream in the coordinate system, as 
shown in figure (1). The streamlines are 
symmetrical around the sphere; therefore there is 
no wake on the rear of a sphere. The flow past a 
sphere varies with the Reynolds number. In 
general, the larger the Reynolds number, the 
smaller the region of flow field in which the 
viscous effects are paramount and vice versa. 
 
 
 
 
 
 
 
 
 
 

Figure (1) 

 Stream Function for Creeping 
Flow 

 ψ = – 
1
4  

U a 3

r  sin 2 θ + 
3
4 U a r sin 2 θ  

                        – 
1
2 U r 2 sin 2 θ  

 =  
3
4 U a r 



 1 – 

1
3  

a 2

r 2  –  
2
3  

r
a  sin 2 θ (12) 

 Velocity Distribution 
 The velocity components in terms of Stokes’ 
stream function are 
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v r  =  – 
1

r 2 sin θ  
∂ ψ
∂ θ   and  v θ  =  

1
r sin θ  

∂ ψ
∂ r  (13) 

The velocity components in this case are 

 v r = – 
1

r 2 sin θ  
∂Ψ
∂ θ   

  = U 



 1 – 

3 a
2 r + 

a 3

2 r 3  cos θ  

 v θ = 
1

r sin θ  
∂ ψ
∂ r    

  = U 



 – 1 + 

3 a
4 r + 

a 3

4 r 3  sin θ  

V = v 
2
r + v 

2
θ  

 = U  

( ) 1 – 
3 a
2 r + 

a 3

2 r 3 
 2

 cos 2 θ + ( ) – 1 + 
3 a
4 r + 

a 3

4 r 3 
 2

 sin 2 θ  

   (13) 
The boundary conditions which must be satisfied 
by the flow are 
 v r  =  0 ,     v θ  =  0     at     r  =  a 

and ψ  =  – 
1
2 U r 2 sin 2 θ     at     r  =  ∞ . 

Equation of DBEM: 
For three-dimensional exterior flow problems, 
the equation of direct boundary element method 
over the surface ‘S’of the body is given by 

c i φ i  =  φ ∞ – 
1

4 π  

 

∫ ∫
S

  
1
r  
∂ φ
∂ n d S  

+ 
1

4 π  

 

∫ ∫
S – i

  φ 
∂
∂ n 



 

1
r  d S  

  (14) 

Discretization of Sphere: 
 The surface of the sphere is discretized into 
quadrilateral elements. The scheme of 
discretization is as shown in the figure (2). 
 The direct boundary element method is 
applied to calculate the creeping flow solution 
around the sphere for which the analytical 
solution is available  
 Consider the surface of the sphere in one 
octant to be divided into three quadrilateral 
elements by joining the centroid of the surface 
with the mid points of the curves in the 
coordinate planes as shown in figure (2) (Mustaq 
et al,2009). 
 Then each element is divided further into 
four elements by joining the centroid of that 
element with the mid–point of each side of the 

element. Thus one octant of the surface of the 
sphere is divided into 12 elements and the whole 
surface of the body is divided into 96 boundary 
elements. The above mentioned method is 
adopted in order to produce a uniform 
distribution of element over the surface of the 
body .  

 
 
 
 
 
 
 
 
 

Figure (2) 
Figure (3) shows the method for finding the 
coordinate (xp, yp, zp) of any point P on the 
surface of the sphere. 
 
 
 
 
 
 
 
 

Figure (3) 
From above figure, we have the following 
equation 

 | r p|  =  1 

 r p . r 1  =  r p . r 2  

 ( r 1 − r 2) . r p  =  0 
or in cartesian form 
 x2

p + y2
p + z2

p  =  1 
 xp (x1 – x2) + yp (y1 – y2) + zp (z1 – z2)  =  0 
xp (y1 z2 – z1 y2) + yp (x2 z1 – x1 z2)  

+ zp (x1 y2 – x2 y1)  =  0 
 As the body possesses planes of symmetry, 
this fact may be used in the input to the program 
and only the non–redundant portion need be 
specified by input points. The other portions are 
automatically taken into account. The planes of 
symmetry are taken to be the coordinate planes 
of the reference coordinate system. The 
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advantage of the use of symmetry is that it 
reduces the order of the resulting system of 
equations and consequently reduces the 
computing time in running a program. As a 
sphere is symmetric with respect to all three 
coordinate planes of the reference coordinate 
system, only one eighth of the body surface need 
be specified by the input points, while the other 
seven–eighth can be accounted for by symmetry. 
 The sphere is discretised into 96 and 384 
boundary elements and the computed velocity 
distributions are compared with analytical 
solutions for the sphere using Fortran 
programming. 
 
 
 
 
 
 
 
                 (a)                                   (b) 

Figure (4): Discretization of sphere into 96 
boundary elements. The point of observation is 

(a) on the z-axis; (b) at 45º to all axes. 
 
 
 
 
 
 
 
                 (a)                                   (b) 

Figure (5): Discretization of sphere into 384 
boundary elements. The point of observation is 

(a) on the z-axis; (b) at 45º to all axes. 
 
 
 
 
 
 
 
 
 
Figure (6): Comparison of computed and 
analytical velocity distributions over the surface 
of the sphere using 96 boundary elements. 

 
 
 
 
 
 
 
 
Figure (7): Comparison of computed and 
analytical velocity distributions over the surface 
of the sphere using 384 boundary elements. 
 Since the streamlines are symmetrical 
around the sphere, the graphs shown above are 
symmetrical on both sides. At the top of figure 
(7), the computed results are convergent with the 
exact results and as we come down, the 
computed results are slightly different with the 
analytical ones due to increase of viscous effects. 

 Conclusion: 
 Direct boundary element method has been 
used to calculate slow flow past a sphere using 
different number of boundary elements. The 
computed  velocities obtained in this way are 
compared with exact velocities for this flow over 
the boundary of the sphere. From the above  
graphs, it is  concluded that the computed values 
are in good  agreement with the exact values for 
the body  of the sphere.. 
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