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Abstract – Traditional research methods adopts normal 

distributions as a pattern of the stock market behavior. This paper 
utilized POT model of extreme value theory, and GPD distribution 
which can give more accurate description on tail distribution of 
financial returns/losses. EVT and POT techniques are applied to a 
series of daily losses of the  RTS index (RTSI) over a 15-year 
period (1995-2009), RTSI is total index of 50 largest Russian 
stocks. The focus is on the use of proposed methods to asses tail 
related risk providing a modeling tool for modern risk 
management.  
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I. Introduction 
 

The study of extreme events has attracted the special 
attention in connection with the global crisis of 2008–2009. 
The Russian stock market has been dramatic volatile over 
15-year period (from 38 points on 05.10.1998 to around 
2487 points on 19.05.2008 and back to about 498 points on 
23.01.2009). In irregular financial market, it is necessary to 
set up models and systems  to evaluate and control risks. In 
this paper we focus on the extreme behavior of financial 
series, unraveling the volatilities in the financial markets has 
always been an decipherable mystery. One of the  purposes  
of  this chapter  is  to  test  the  validity  of  a  popular  risk 
management instrument: Value-at-Risk estimator in Russian 
equity market, which is a widely adopted technique in the 
developed countries for quantifying  market risk. We have 
to deal with extreme events when a risk takes values from 
the tails of its probability distribution. In the field of market 
risk management it is a great concern the day by day 
determination of the Value-at-Risk (VaR) [1]. VaR is a high 
quantile of the distribution of losses (for example the 95th 
percentile): VaRp=F-1(p), where F is the loss cumulative 
distribution function and p the selected probability level. 
Traditional procedure calculating VaR based on normal 
distribution has limitations. VaR model reflects that it is to 
asses the possible maximum loss under regular market 
environments. Risk managers have become more concerned 
with events occurring under extreme market conditions 
[2,3]. This paper argues that extreme value theory (EVT) 
and  POT (Peaks  Over Threshold)  model provide tools for 
estimating measures of tail risk under irregular volatility in 
market. We consider a fully parametric model, based on the 
GPD (Generalized Pareto Distribution), which can be easily 
estimated by maximum likelihood method [4,5].  
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II. Theoretical framework of the extreme value 
approach  

 
Extreme value theory is a powerful and fairly robust 

framework to study the tail behavior of a distribution. There 
have been a number of extreme value studies in the finance 
literature in recent years: quantile estimation using the 
extreme value theory [6]; the estimation of the tails of loss 
severity distributions and the estimation of the quantile risk 
measures for financial time series using extreme value 
theory [7,8]; overview the extreme value theory as a risk 
management tool [9]; potentials and limitations of the 
extreme value theory [10,11]; an extensive overview of  the 
extreme value theory for risk managers [12]; the estimation 
of tail-related risk measures for heteroskedastic financial 
time series [13]; comprehensive source of the extreme value 
theory to the finance and insurance literature [14,15]. 
 

POT model and Generalized Pareto distribution 
 

We use of Extreme Value Theory to model the tail returns 
and then show how our EVT estimates are incorporated into 
the risk measures. Two main approaches are proposed in the 
literature [16]: the Block Maxima (BM) and the Peaks-over-
Threshold models (POT). The group of models for threshold 
exceedances are more modern and powerful than the BM 
models [16], we focus on this approach and its application to 
the losses on the RTSI stock index. We apply the parametric 
POT method based on the Generalized Pareto distribution 
(GPD) to describe tail behaviour. Begin by assuming that 
market losses represent the realizations x of a random 
variable X over an enough high threshold u.  More  
particularly,  if  X  has  the  cumulative distribution  function  
F(x),  we  are interested  in  the  cumulative distribution  
function  Fu(x)  of  exceedances  of  X  over  a  high  
threshold u, i.e. the conditional excess distribution function 
is defined as: 
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As to the sufficient large u, EVT provides us with a 

powerful key result, which states for a large class of 
underlying distributions F(x) [2]: 
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where Generalized Pareto Distribution  is defined by: 
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GPD subsumes three other distributions under its 

parameterization [2]. So, when tail index ξ=0, we obtain a 
Type 1 (exponentially declining) distribution. If ξ<0, we 
have a Type 2 (power declining). For ξ>0, we obtain a Type 
3 (constant declining) distribution. Given these three types 
of distribution, one of our tasks in this paper will be to 
uncover which type best describes the extremes of stock 
returns on the emerging Russian market. 
 

Identification of GPD parameters 
 

Let (X1,X2,…,Xk(u)) be a sequence of iid random variables 
from an unknown distribution F, Xi>u.  Shape ξ and scale 
β>0 parameters are then defined on the threshold u [16].  
These GPD parameters can be determined by maximum 
likelihood (ML) methods. The log likelihood function of the 
GPD for ξ≠0 is: 
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where xi satisfies the constraints specified for xi. If ξ=0, the 
log likelihood function is: 
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ML estimates are then found by maximizing the log-
likelihood function using numeral optimization methods. 
We can get these ξ and β estimates through solving 
simultaneous equations (ξ≠0): 
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Tail evaluation formula 

 
Assuming that u is sufficiently high, by combining 

expressions (2) and (3) the distribution function F(x) for 
exceedances can be written as: 
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Fu(x) is a GPD and F(u) is given by [n-k(u)]/n; n is the 

total number of observations, k(u) the number of 
observations above the threshold u, ξ and β are the 
parameters of the GPD.  

 
Estimating VaR 

 
For a given probability p>F(u) and threshold u, the value-

at-risk (VaR) is calculated by inverting the tail estimation 
formula (5): 
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                                   (6) 

 
Choosing  threshold value 

 
Choice of the threshold u is the important issue to deal 

with: u too high results in too few exceedances and 
consequently high variance estimators. On the other hand, u 
too small provides biased estimators and the approximation 
to a GPD could not be feasible. It is possible to choose an 
asymptotically optimal threshold by a quantification of a 
bias versus variance trade-off.  
 

Mean excess function 
 

One suggestion which is of immediate use in practice is 
based on the linearity of the mean excess function e(u) for 
the GPD. From [2] we know that for a random value X with 
a GPD distribution function Gξ,β the mean excess function 
is: 
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It   suggests  a  graphical  approach for choosing u: 

choose u >0 such that e(x) is approximately linear for x¸u. 
Using plots to compare resulting estimates across a variety 
of u-values, due to the usual presence of multiple choice of 
the threshold, is recommended. 
 

Hill plot 
 

Let X1>X2>…>Xn be the order statistics of positive 
random variables iid.  The Hill estimator of the tail index ξ 
using k+1 order statistics is defined by [17]: 
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Hill plot is a good instrument to find the optimal 

threshold [18]. Over a specific range of exceedances, the 
Hill plot may be under the stationary series, and the turning 
point is a good choice of optimal threshold. We use the 
following intuitive ideas: 
(1) The sequence of the turning point is less than ~n/10 [19]. 
(2) The Hill estimator in the turning point has a relative 
large deviation from the fitted stationary straight line. 
(3) The turning point is the last sequence of point that 
satisfies the two conditions stated above. 
 

III. Empirical results  
 

We consider a extreme value approach, working on the 
series of daily log losses (negative returns) of the Russian 
RTSI Index over a period of fifteen years (1995-2009). The 
Russian Trading System Index (RTSI) comprises of 50 of 
the largest stocks capturing 85% of the total market 
capitalization of the Russian Trading System exchange.  The 
data used in this paper are obtained from RTS web site [21]. 
The empiric study uses the series of log daily losses of the 
RTSI Index, containing 3 447 trading days (closing prices). 
Fig.1 shows the plot of daily dynamics of RTSI index 
values, and  log daily losses. 
 



Figure 1: RTSI Index – sample period 01.09.1995 – 
30.06.2009 (closing values):  
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a) daily dynamics of index values; 
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b) log daily losses. 

 
Table 1 shows the summary statistics for the series of log 

daily changes. This table shows that kurtosis value is 9.7024 
and skewness value is 0.3752. Relative value of Normal 
distribution is 3 and 0, respectively. So we can see empirical 
distribution of log daily losses and normal distribution is not 
compatible.  

In addition to this, Jarqua-Bera  statistic shows that law of 
log daily losses is obviously different from normal 
distribution. The JB test statistics is defined as [10]: 
 

22 ( 3)
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The JB statistic has approximately a chi-squared 

distribution, with two degrees of freedom. The Jarqua-Bera 
test depends on skewness and kurtosis statistics. If the JB 
test statistic equals zero, it means that the distribution has 
zero skewness and kurtosis is about equal 3, and so it can be 
concluded that the normality assumption holds. Skewness 
values far from zero and kurtosis values far from 3 lead to 
an increase in JB values. The test returns the logical 
value h = 1 if it rejects the null hypothesis at the p<0.05 
significance level, and h =0 if it cannot. We have for data of 
Table 1: JB value=6532.8, p~0, h=1. It means that we can 
reject the hypothesis that the distribution of  daily losses is 
normal. 

 
 

 
Table 1 Summary statistics for daily losses in RTS  
 

mean min max 
-0.0007 -0.2020 0.2120 

std skewness kurtosis 
0.0289 0.3752 9.7024 

variance JB test n 
-0.0008 6532.8 

h=1,p<0.001 
3447 

 
In Fig.2 we represent the Hill graph, which plots the Hill 

estimator of ξ, versus the k upper order statistics (and 
threshold u, respectively). We select the last area to 
k~0.1*3447~350, where the Hill estimator is more stable.  

 
Figure 3 Hill estimator versus k upper order statistics 
(probability level p=0.95): 
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a) Hill estimator versus k upper order statistics (k≤350); 
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b) Hill estimator versus k upper order statistics 

(k≤350) (plot zooming); 
 
The mean excess function (7) allows to establish the 

behavior of the distribution tails [23]: we choose threshold u 
looking at the linear shape (with positive slope) of the graph 
(Fig.3). Considering Hill plot and the mean excess function, 
we choose u=0.0334 (the number of observation exceeding 
threshold u is equal k=294).  

 
 
 
 
 



Figure 3: Mean excess function 
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The results of ML estimation of the GPD parameters (on 
chosen threshold u=0.0334) are ξ=0.1492 and β = 0.0206: 

 
Maximum Likelihood (ML) estimates of ξ,β: 
out =  
         par_ests: [0.1492 0.0206] 
           funval: -803.6979 
          par_ses: [0.0688 0.0018] 
        threshold: 0.0334 
             data: [1x294 double] 
        p_less_thresh: 0.9675 

 
 

QQ-plot graph makes us able to evaluate the goodness of 
fit of the empirical series to a parametric GPD model (Fig.4) 
[24]. Notice that a concave departure from the straight line 
in the QQ-plot (Fig.4a) is an indication of heavy tailed 
distribution, whereas a convex departure is an indication of 
a thin tail. 
 

Figure 4: QQ-plot versus GPD distribution and 
exponential distribution: 
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a) QQ-plot: empirical vs exponential distribution  
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Ordered Data  
b) QQ-plot:  empirical  vs  GPD  distribution ( 

ξ=0.1492, β=0.0206, u=0.0334)  
 

After we get estimates ξ,β, use them in (5), get the 
formula for  of tail evaluation: 
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Employ the result in (6), get the VaR formula on GPD 

model: 
 

0.14920.0206 3447
0.0334 {[ (1 )] 1}

0.1492 294pVaR p      

In Table 2 we report 95%, 99%, 99.5%, 99,9% Value-at-
Risk estimates of three different VaR estimation methods. 
The performance of the different VaR estimation methods 
can be evaluated by comparing the estimates with the actual 
losses observed, in particular by computing (and testing) the 
number of VaR violations. VaR approaches based on the 
assumption of normal distribution are definitely to 
underestimate high percentiles, while estimates based on 
historical simulation face with the problem of out of sample 
performance. The extreme value approach on GPD model 
seems appropriate and easy to implement.  
 

Table 2 
VaR estimation for daily RTSI losses: 

one day horizon 
 
 
VaR  
approach 

p=0.950 p=0.975 p=0.990 p=0.995 p=0.999 

Normal 
model 

0.0394 0.0451 0.0520 0.0565 0.0663 

Historical 
simulation 

0.0452 0.0607 0.0849 0.1083 0.1771 

GPD 
model 

0.0499 0.0611 0.0856 0.1062 0.1620 

 
 
 
 
 
 
 
 



IV. Conclusions 
 

Since last century, volatility of international financial 
system is getting severe. A stable financial system is so 
desirable. Therefore, risk management has aroused growing 
attention. As a measurement of market risk, VaR has been 
widely used in risk management. However, derivation 
between VaR estimation of normal hypothesis and abnormal 
distribution of practical benefit rate of financial always 
cause the bigger error in estimation. Aiming at this problem, 
through GPD model which fits tail distribution of financial 
products more accurately, this paper recalculates VaR by 
POT method.   Compared with traditional method of risk 
study, this paper has made some progress in research 
approach and philosophy and more applicable in practice, 
which has been demonstrated by example of the Russian 
market analysis. 

We use software systems: EVIM [25,26], MATLAB [27] 
and LOGOS-EVT, developed by authors of this paper. 
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