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ABSTRACT

      An important activity in plant breeding is to test a wide range of genotypes in a wide diversity of environments with the objective of selecting superior genotypes. Often, breeders encounter the problem of genotype by environment interaction (GxE). It reflects differences in adaptation which may be exploited by breeding for specific adaptation or broad adaptation. One method breeders have used to reduce impact of these interactions is cluster analysis (classification). A particular problem encountered with cluster analysis when used for the analysis of GxE is the determination of the optimal number of groups to represent the underlying structure of the data. This paper therefore outlines a simple and practical stopping rule to determine the truncation level when clustering GxE data set. CIMMYT Data from wheat trials conducted in different countries with different climatic conditions are analysed based on the methodology developed in this paper. This resulted in five groups of environments with similar response pattern with their respective predicted (recommended) genotypes G23, G17, G26, G1 and G34.
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INTRODUCTION

      Genotype by environment interaction (GxE) occurs when the relative performance of genotypes differs when grown in different environments (Zobel and Talbert, 1984). In a practical sense, when this happens, the plant breeder cannot recommend a particular genotype because it may have produced outstanding yield in some sites and performed poorly when grown in other sites. Thus, the presence of genotype by environment interaction implies that the behaviour of genotypes in a trial depends on the particular environment in which they are grown. Wide variations in climatic conditions and soil types also mean that no two growing environments are similar; hence genotype selection is crucial to avoid crop failures that subsistence farmers cannot afford.

      One method breeders have used to reduce impact of these interactions is cluster analysis (classification). Classification is one method which enables the formation of groups of genotypes with similar response patterns across environments (Byth et al., 1976; DeLacy, 1981, 1989; Ghaderi et al., 1982; Hayward et al., 1982). In plant breeding trials there is generally no known underlying number of distinct groups which represent genotypic performance. Traditionally this has led to the perceived utility of the groupings formed by the classificatory procedure determining group number (Williams and Lance, 1965; Goodall, 1966; Goyne et al., 1982). A particular problem encountered with cluster analysis when used for the analysis of GxE is the determination of the optimal number of groups to represent the underlying structure of the data. The utility of classificatory procedures in plant breeding has been amply demonstrated (Abou-El-Fittouh et al., 1969; Mungomery et al., 1974; Byth et al., 1976; Bull and Hogart, 1990; Cooper et al., 1990). However, both the determination of an appropriate number of underlying groups and the frequency of particular partitions at that level would make the application of these clustering techniques in plant breeding trials less subjective (Bull et al., 1992). This paper therefore outlines a simple and practical stopping rule to determine the truncation level when clustering GxE data set.

 MATERIAL AND METHODS

Experimental

       Dataset selected for this study were obtained from the 23rd International Spring wheat yield nursery trial from CIMMYT (International Maize and Wheat Yield Improvement Centre) for 1986-1987 (MacKenzie et al., 1971). The CIMMYT data represented a diverse collection, originating from countries such as Kenya, Bangladesh, and China etc. and the trial sites were located in wheat growing areas in all continents.

      The experiment involved the evaluation of 40 genotypes of wheat in each of 45 environments. The genotypes were evaluated in a randomized complete block design with 3 replications in each environment. For the sake of simplicity, the genotypes were coded G1, G2,..., G40 whereas environments were coded 1, 2,..., 45. These cultivars represented the principal types of spring wheat grown throughout the world. Their parentage, origin and aspects of their habit, disease resistance and quality have been described.

 Analytical

      The wheat yield of each genotype in each environment was averaged across replicates to produce 40 x 45 data matrix which was subjected to analysis. Numerical classification applied in a manner suggested by Mungomery et al. (1974) was extended to incorporate residuals in the classification process of the environments. There are a variety of methods which might be used for clustering a data set but here we have restricted ourselves to the use of Ward’s method of incremental sum of squares. Ward's method performed relatively well in several validation studies reviewed in Milligan and Cooper (1987).
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 then using Z with genotypes as attributes, the environments was classified using agglomerative hierarchical clustering procedure.  Consider an example of a typical dendrogram generated from a fictitious data set consisting of nine genotypes grown in twelve environments (Fig. 1). For each group of environments, we can assign a predicted genotype being the genotype with the “best” mean yield in the group. To the left or right of each group in the dendogram, the corresponding predicted genotype (e.g. G9 for genotype 9) has been be assigned. 
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[image: image7.emf]Figure  1. A dendrogram from cluster analysis of the residual interaction                                matrix from a set of 10 genotypes in 12 environments  
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Fig. 1.  Dendrogram from fictitious data consisting of 9 genotypes in 12 environments

For example, G9 has the highest mean yield across all the 9 environments hence G9 is selected as the predicted genotype at the one group solution. At the two groups solution (g=2), the two predicted genotypes are G9 and G1 while at the three group solution, G9, G9 and G1 are the predicted genotypes. We can continue to estimate the predicted genotypes for all the different groups in the dendrogram.

After construction of a dendogram, one of these four situations or cases may arise at each node of Figure 2. For example, predicted genotype p at one group solution (g=1) splits into two groups solution (g=2) with predicted genotypes p' and p''.
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   Fig. 2. Split of predicted genotype p into two predicted genotypes p' and p''.

In Figure 2(a), the predicted genotype p splits into two equal predicted genotypes p' and p'' which are not equal to that of p. i.e. p
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p' = p'' whiles in Figure 2(b), the predicted genotype p splits into two equal predicted genotypes p' and p'' which are equal to that of p. i.e. p = p' = p''. Moreover, in Figure 2(c), the predicted genotype p splits into two unequal predicted genotypes p' and p'' of which p' equal to that of p. i.e. p 
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 p. Finally, in Figure 2(d), the predicted genotype p splits into two unequal predicted genotypes p' and p'' which are not equal to that of the parent i.e. p 
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In general, using the predicted genotypes, we can predict the type of split that can occur at the different levels of the dendrogram. For example, in figure 2(b) the outcome of a split results in two predicted genotypes (p' and p'') which are the same as the predicted genotype of the corresponding “parent” group (p).  Although the split in Figure 2(b) may result in a major break between the two levels (g=1) and (g=2) in terms of the scale of the dendrogram, there is no advantage in choosing the two group solution over the one group solution. A large change in fusion level in a dendrogram may be necessary but not sufficient condition for the presence of clear-cut groups. In Figure 2(a) and Figure 2(c), one of the predicted genotypes will be the same as the parent group while the other may be different. In the case of figure 2(d), the results produce two predicted genotypes which are completely different from the parent group.

Methodology

      This section primarily focuses on a methodology to cut a dendogram. Using the predicted genotype at each level of the dendrogram, we can associate a monotonically increasing numeric quantity, the Inefficiency value 
[image: image15.wmf]F

 which we can define as
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An important practical insight from the use of  
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 values reflect the measure of the loss incurred for using the predicted genotype rather than the “true” best genotype for the environment. The development of the 
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values is a practical one based on the framework of two assumptions:

(i). The observed mean yield from each environment represents the (unavailable) “true” mean yield.

(ii). A substitute for the (unknown) “true” best genotype for each environment is the obvious observed best genotype which we do know, which is the “top” yielding at each environment.

      We can interpret 
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 as a measure for quantifying information in the dendrogram similar to the fusion or the amalgamation coefficient, which is the numerical value at which various cases merge to form groups. Essentially it seeks to measure the relative inefficiency arising from predictions made from the different levels of the dendrogram. For example, at one group solution, we will expect a single superior genotype to be predicted for all the environments used in the study, hence 
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 when there is just one group present (main effect prediction), a minimum value of 0 when there are N groups in the data each comprising of a single unit and an intermediate value between 0 and
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when there can be any number of groups between 1 and N. Thus, a data set with t environments will end up with t sets of 
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 values which can be examined to discover a significant “jump” in the values of
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. A jump implies that two relatively dissimilar groups have been merged; thus the number of groups prior to the merger is the most probable solution. One difficulty with this procedure is that many small “jumps” in the values of the 
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 can be found and there is really no way to tell through simple visual inspection which of those is the “correct” one.

       We relate the inefficiency values to the type of split which can occur from one level of the dendrogram to another. For example, in Figure 2(b) where the outcome of a split results in two predicted genotypes (p' and p'') which are the same as the predicted genotype of the corresponding “parent” group (p), the change in 
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  between the two levels will be zero suggesting that there is no advantage in choosing the two group solutions over the one group solution. Since splits in Figure 2(c) and Figure 2(d) will result in some environments changing their predicted genotypes, the corresponding change in 
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The inefficiency rule, a stopping rule for selecting the partition which “best” approximates the underlying group structure is proposed from the distribution of the 
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 is an arbitrary scaling factor. The choice of 
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 is critical in deciding the optimal number of groups and is determined through series of simulation studies. From simulation studies conducted it is appropriate to consider an 
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 value of 0.5 which we believe reflect what agronomists have felt is sensible. An 
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 value of 0.5 defines a “significant” jump of 0.5
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It follows that if no value of 
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 satisfies the above inequality, the one group solution is chosen as the underlying data structure. 
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RESULTS AND DISCUSSION

         The concepts discussed above is illustrated by considering the analysis of yield data set from CIMMYT International Spring Wheat Yield Nursery (ISWYN) conducted in 1967-68 consisting of 45 environments and 40 genotypes. These data are representative of the large sets of plant adaptation data collected annually. Moreover, a collection of subsets of this dataset were also used. These can be classified into small dataset 15 genotypes in 20 environments and large dataset 40 genotypes in 45 environments.

        Using Ward's method of minimum incremental sums of squares, the residual interaction matrix (
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) of the data was subjected to hierarchical cluster analysis and the resulting dendrograms are presented in the figures below.


Fig. 3. Dendogram for 15 genotypes in 20 environments from the CIMMYT ISWYN data of 40 genotypes by 45 environments.

Table 1: Inefficiency criteria values from the analysis of subset data 20 environments and 15 genotypes from CIMMYT ISWYN data for 1986-1987
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	1              14105            0                         0                                  0                                            0                            

2              12872           1233                    20                                24660                                    1.75

3              10228           2644                    3                                  7932                                      0.56

4              10228           0                          0                                  0                                            0

5              8739             1489                    1                                  1489                                      0.11

6              6906             1833                    1                                  1833                                      0.13



Fig. 4. Dendogram for 40 genotypes in 45 environments from the CIMMYT ISWYN data of 40  genotypes by 45 environments.

Table 2: Inefficiency criteria values from the analysis of 45 environments and 40 genotypes from CIMMYT ISWYN data for 1986-1987
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	1              35397.02       0                         0                                  0                                           0                            

2              33519.68       1877.34              9                                  16896.06                              0.48

3              31656.68       1863                   36                                67068                                   1.89

4              27748.68       3908                   12                                46896                                   1.32

5              23806.68       3942                   9                                  35478                                   1.00

6              23425.01       381.67                1                                  381.67                                  0.01

7              22475            950.01                4                                  3800.04                                0.11

8              21776            699                     7                                  4893                                     0.14

9              20206.33       1569.67              2                                  3139.34                                0.09

10            18437.31       1769.02              4                                  7076.08                                0.20


To the right or left of each group in the dendrogram, the corresponding predicted genotype can be read. Besides, from Table 1, it is quite clear that we can cut dendogram at the three groups solution (
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). This solution classifies environments into three groups which are environments (1, 7, 6) for group 1, (2, 3, 6, 9) for group 2 and (4, 14, 18, 8, 13, 5, 10, 17, 12, 11, 15, 15, 19, 20) for group 3. Group 1, 2 and 3 predict genotype 6, 1, and 6 respectively.

       Finally, Figure 4 shows dendogram for the full dataset of 40 genotypes by 45 environments. From Table 4, it is quite clear that we can cut dendogram at the five groups solution (g=5). It is clear from Table 2 that there are consistent patterns if 
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.The predicted genotypes at the five groups solution are genotypes G23, G17, G26, G1 and G34.

CONCLUSIONS

The method is effective because it is easily understood, simple and easy to implement. Moreover, it gives clear cuts of dendograms into meaningful groups.

This paper has outlined a simple and practical guideline for the choice of truncation level in genotype by environment studies. There are several approaches for truncating dendrograms arising from cluster analysis of which an example is cutting by subjective inspection of the different levels of the ``tree'' (Byth et al. 1976) as indicative of the underlying data structure. This does not seem to please everybody. The application of hierarchical clustering techniques has been criticized because of the difficulty associated with determination of the appropriate number of groups at which the hierarchy should be truncated.

We have shown in this work that though there may be a major break between groups in terms of the scale of the dendrogram, it is not sufficient condition for the presence of clear-cut groups. Clearly, new developments on the subject are required. The main objective for using cluster analysis in this work is to predict the ``best'' genotype for each environment. To achieve this objective, the inefficiency criteria is proposed as a stopping rule based on the loss made for using the predicted genotype rather than the observed best genotype for each environment. The consistency of the results from the analysis of the data provides the necessary evidence to support the usefulness of the criterion. I therefore recommend the use of the criterion for routine analysis of GxE datasets. The computation of the criterion values are not complex and should be readily implemented using GENSTAT by agronomists and plant breeders.

In addition to the inefficiency criterion, the genotypes predicted from the cluster analysis should be assigned to their corresponding environment groups in the dendrogram a feature which is not found in other applications of cluster analysis. This provides a means of visualizing the interaction pattern arising from the data and to identify which groups have the same predicted genotype. Using the inefficiency values experimenters can assess the loss in choosing whether to use the main effect model or the interaction model. The great advantage of the inefficiency criterion is its wide applicability.
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Figure  1. A dendrogram from cluster analysis of the residual interaction                                matrix from a set of 10 genotypes in 12 environments  
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